

The Atiyah class and ideal systems

bγ

M. Jotz Lean

Contents

1. The Bott connection.

The "universal" example.

2. The Atiyah class of a holomorphic vector bundle.

Holomorphic vector bundles and holomorphic Lie algebroids as infinitesimal ideal systems.

3. Infinitesimal ideals and the Atiyah class.

Example: The Atiyah class(es) of a foliated principal bundle.

4. Lie pairs and the Atiyah class.

Obstruction to a Lie pair carrying an ideal pair.

The Bott connection

The Bott connection 1/28

The Bott connection

(A,J) is a "Lie pair".

Let $A \to M$ be a Lie algebroid and $J \subseteq A$ a subalgebroid. The **Bott connection** is the flat J-connection on A/J defined by

$$\nabla^{J}: \Gamma(J) \times \Gamma(A/J) \to \Gamma(A/J), \quad \nabla^{J}_{j} \bar{a} = \overline{[j,a]}.$$

$$\cdot \text{ Flatness} = \text{ Jacobi id.} \qquad \qquad \text{ jer(3)} \qquad \text{ a. } \in \Gamma(A)$$

$$R_{\nabla^{J}}(j_{1},j_{1}) \bar{a} = \overline{\text{Joc}_{C_{1},1}}(j_{1},j_{1},a) = 0$$

$$\text{Examples:} \qquad \qquad \text{ hie algebra 8; } \text{ J. a. subalgebra $h}$$

$$\nabla^{h} = ad : h \times \partial_{h} \to \partial_{h}$$

$$\nabla^{h} = ad : h \times \partial_{h} \to \partial_{h}$$

$$\nabla^{h} = ad : h \times \partial_{h} \to \partial_{h}$$

$$\nabla^{h} = ad : h \times \partial_{h} \to \partial_{h}$$

$$\nabla^{h} = ad : h \times \partial_{h} \to \partial_{h}$$

$$\nabla^{h} = ad = 0.$$

$$\text{More generally if } \text{ J. C. A. is raive ideal}$$

$$\text{i. e. } \left[\Gamma(\text{J.})_{1}\Gamma(A)\right] \subseteq \Gamma(\text{J.}) \quad \text{ then } \nabla^{\text{J.}} = 0$$

$$\text{The Bott connection} \qquad \qquad (\longrightarrow g(\text{J.}) = 0)$$

2/28

The Bott connection and foliations

A=TM > T , J=F & TM "foliation".

PF:
$$G(F) \times G(TM_F)$$
 > $G(TM_F)$ | $G(TM_F)$

The Bott connection 3/28

The Bott connection – properties

If
$$X_1, Y_1 \in \mathcal{X}(M)$$
 ∇^F flat.
 $\Rightarrow [Y_1, Y_1] \quad \nabla^F$ flat.
Why? $\exists acobi: \quad \forall x \in \mathcal{K}(F)$
 $\exists x_1, x_2, x_3 \in \mathcal{K}(F)$

The Bott connection 4/28

Atiyah class of a Lie pair

Let (A, J) be a Lie pair. The Atiyah class of the Lie pair is a cohomology class

$$\alpha_J \in H^1(J,\operatorname{Hom}(A/J,\operatorname{End}(A/J))).$$
 If it vanishes, there exists an extension $\nabla \colon \Gamma(A) \times \Gamma(A) \to \Gamma(A)$ of ∇^J such that
$$\bar{a}, \bar{b} \in \Gamma(A/J) \nabla^J \text{-flat} \quad \Rightarrow \quad \overline{\nabla_a b} \nabla^J \text{-flat}.$$
 If $A = TM$, $T = F$ simple
$$X, Y = F = F \text{-flat} \quad \Rightarrow \quad \nabla_X Y = F \text{-flat} \quad \Rightarrow$$

Atiyah class of a Lie pair

The Bott Color of $d_T = 0$ $\omega_T = d_T = 0$ $\omega_T = 0$

Atiyah class of a Lie pair

- Chen, Stiénon, Xu 2016: From Atiyah Classes to Homotopy Leibniz Algebras.
- Laurent-Gengoux, Stiénon, Xu 2014: Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds.

The Bott connection 7/28

The Atiyah class of a holomorphic vector bundle

Holomorphic vector bundles

Theorem (Kobayashi)

Let $E \to M$ be a complex vector bundle over a complex manifold M. Then E is a holomorphic vector bundle if and only if there exists a T: M - M \mathbb{C} -linear connection

$$J_{\mathbb{C}}: TN_{\mathbb{C}} \rightarrow TN_{\mathbb{C}}$$

$$D = D^{1,0} + D^{0,1}: \Gamma(TM_{\mathbb{C}}) \times \Gamma(E) \rightarrow \Gamma(E) = T^{4,0}N_{\mathbb{C}}$$

such that D^{0,1} is flat.

$$\frac{\partial}{\partial e} = \frac{\partial}{\partial e} = \frac{\partial}$$

THE

Holomorphic connections

Let $E \to M$ be a holomorphic vector bundle. A \mathbb{C} -linear connection $\nabla \colon \Gamma(TM) \times \Gamma(E) \to \Gamma(E)$ is holomorphic if $\nabla_X e$ is holomorphic for $X \in \mathfrak{X}(M)$ a local holomorphic vector field and $e \in \Gamma_U(E)$ a local holomorphic section.

Holomorphic Lie algebroids

A holomorphic Lie algebroid is a holomorphic vector bundle $A \to M$ with a Lie algebroid structure $(\rho, [\cdot, \cdot])$ such that

Infinitesimal ideals and the Atiyah class

Infinitesimal ideals

(p, 3) in finites: Lal ideal pair . Definition (JL-Ortiz 14, Hawkins 07) Let $(q: A \to M, \rho, [\cdot\,,\cdot])$ be a Lie algebroid, $F_M \subseteq TM$ an involutive subbundle, $J \subseteq A$ a subalgebroid over M such that $\rho(J) \subseteq F_M$ and ∇ a flat F_M -connection on A/J with the following properties:

- 1. If $a \in \Gamma(A)$ is ∇ -flat, then $[a, j] \in \Gamma(J)$ for all $j \in \Gamma(J)$.
- 2. If $a, b \in \Gamma(A)$ are ∇ -flat, then [a, b] is also ∇ -flat. if $S^{(3)} = \mathbb{I}_{H}$ 3. If $a \in \Gamma(A)$ is ∇ -flat, then $\rho(a)$ is ∇^{F_M} -flat. if $S^{(3)} = \mathbb{I}_{H}$ The triple (F_M, f, ∇) is an infinitesimal ideal system in A

The triple (F_M, J, ∇) is an infinitesimal ideal (system) in A.

$$\underbrace{\text{1)} \ \, \text{eq. ho}:} \\
\nabla_{j}^{3} \overline{\alpha} = \nabla_{g(j)} \overline{\alpha}$$

Infinitesimal ideals

(あ,TI) is an "ideal Syster" in the sense of

in hat cone

Machendie -Higgins.

Atiyah class of an infinitesimal ideal

Let (F_M, J, ∇^i) be an infinitesimal ideal in A. The **Atiyah class**

$$\alpha \in H^1(F_M, \operatorname{Hom}(TM/F_M, \operatorname{End}(A/J)))$$

of the infinitesimal ideal is a cohomology class that vanishes if and only if there exists an extension $\nabla \colon \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(A)$ of ∇^i such that $\nabla^i \colon \Gamma(f_{\mathcal{D}}) \times \Gamma(f_{\mathcal{D}}) \to \Gamma(f_{\mathcal{D}})$

$$\begin{cases} \bar{a} \in \Gamma(A/J) \ \nabla^{i}\text{-flat and} \\ \bar{X} \in \Gamma(TM/F_{M}) \ \nabla^{F_{M}}\text{-flat} \end{cases} \Rightarrow \overline{\nabla_{X}a} \ \nabla^{i}\text{-flat}.$$

Reducible algebroid

Theorem

Let (F_M, J, ∇) be an infinitesimal ideal in a Lie algebroid $A \to M$. If the quotient vector bundle $A' := (A/J)/\nabla \to M/F_M =: M'$ exists, then the Ativah class of the infinitesimal ideal vanishes.

In other words...

Theorem

Let (F_M, J, ∇) be an infinitesimal ideal in a Lie algebroid $A \to M$. If (F_M, J, ∇) integrates to an ideal, then the Atiyah class of (F_M, J, ∇) vanishes.

Foliated principal bundles

Foliated principal bundles 17/28

Foliated principal bundles

A principal *G*-bundle $\pi: P \to M$ is described infinitesimally by its Atiyah sequence

$$0 o \mathfrak{g}_P o rac{TP}{G} o TM o 0.$$

A principal foliation on $\pi: P \to M$ is an involutive subbundle $F \subseteq TP$

- that is G-invariant; $T_p\Phi_gF(p)=F(pg)$ for all $p\in P,g\in G$,
- and with $F^{\pi} := F \cap T^{\pi}P$ of constant rank.

Foliated principal bundles 18/28

The infinitesimal ideals

Let $\mathfrak g$ be the Lie algebra of the Lie group G. Then there is an ideal $\mathfrak i\subseteq \mathfrak g$ such that

$$F^{\pi}(p) = \{x_P(p) \mid x \in \mathfrak{i}\}$$
 for all $p \in P$.

The associated bundle i_P is a naive ideal in TP/G.

Foliated principal bundles 19/28

The Atiyah class(es)

Foliated principal bundles 20/28

Lie pairs and the Atiyah class

Lie pairs and the Atiyah class

(A, J) a Lie pair; $F_M \subseteq TM$ involutive subbundle with $\rho(J) \subseteq F_M$ and a flat F_M -connection ∇ on A/J. Then

$$\rho^{\star} \colon \Omega^{\bullet}(\mathit{F}_{\mathit{M}}, \mathsf{Hom}(\mathit{TM}/\mathit{F}_{\mathit{M}}, \mathsf{End}(\mathit{A}/\mathit{J}))) \to \Omega^{\bullet}(\mathit{J}, \mathsf{Hom}(\mathit{A}/\mathit{J}, \mathsf{End}(\mathit{A}/\mathit{J})))$$

is defined by

$$(\rho^*\omega)(j_1,\ldots,j_p)(\overline{a_1},\overline{a_2})=\omega(\rho(j_1),\ldots,\rho(j_p))(\overline{\rho(a_1)})(\overline{a_2}).$$

If
$$\nabla_{\rho(j)} \bar{a} = \nabla_j^J \bar{a}$$
 for all $j \in \Gamma(J), a \in \Gamma(A)$, then

Lie pairs and the Atiyah class

Theorem (JL 19)

If (F_M, J, ∇) is an infinitesimal ideal in A, then the image under ρ^* of its Atiyah class

$$\alpha \in H^1_{\mathbf{d}_{\nabla^{\mathrm{Hom}}}}(F_M, \mathrm{Hom}(TM/F_M, \mathrm{End}(A/J)))$$

is the Atiyah class

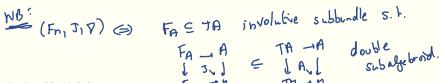
$$\alpha_J \in H^1_{\mathbf{d}_{\nabla^J}}(J, \mathsf{Hom}(A/J, \mathsf{End}(A/J)))$$

of the Lie pair.

Obstruction result.

Theorem (JL 19)

Let (A, J) be a Lie pair. If (A, J) is an ideal pair, then $\alpha_J = 0$.



References

References 26/28

- Foliated groupoids and infinitesimal ideal systems, with Cristian Ortiz, "Indagationes Mathematicae" (2014), Volume 25, Number 5, 1019-1053.
- VB-algebroids morphisms and representations up to homotopy, with Thiago Drummond and Cristian Ortiz, "Differential Geometry and its Applications" (2015), Volume 40, 332-357.
- Obstructions to representations up to homotopy and ideals, arXiv:1905.10237, 2019.
- Infinitesimal ideal systems and the Atiyah class, arXiv:1910.04492, 2019, new version very soon!
- Linear generalised complex structures, with Malte Heuer, in preparation (2020).

Thank you for your attention!

References 28/28