A Singular Symplectic Slice Theorem

Anastasia Matveeva

Joint work with Eva Miranda

UPC, BGSMath

Friday Fish 13 November 2020

Friday Fish 13 November 2020

Outline

- **1** *b*-Symplectic Geometry
- 2 Superintegrable Systems
- 3 Slice Theorem

symplectic

Motivating examples

- 4 Singular Hamiltonian Case
- 5 non-Hamiltonian Action

b^m -Symplectic Manifolds

b-manifold: a pair (M,Z) of an oriented manifold M and an oriented exceptional

hypersurface Z

defining function: $t: M \to \mathbb{R}, t|_Z = 0$

b-vector field: a vector field on M that is everywhere tangent to Z

locally generated by $(t\frac{\partial}{\partial t}, \frac{\partial}{\partial x_0}, \dots, \frac{\partial}{\partial x_n})$

b-tangent bundle: all the sections are b-vector fields,

at
$$p \in M \setminus Z$$
, ${}^bT_pM = T_pM$

b-symplectic form:
$$\alpha + \beta$$
, $\alpha \in \Omega^1(M)$, $\beta \in \Omega^2(M)$ symplectic at $p \in M \setminus Z$

symplectic at $p \in Z$ as an element of $\bigwedge^2({}^bT_p^*M)$

$$b^m$$
-symplectic form: $\sum_{i=1}^m \frac{dt}{t^i} \wedge \alpha_i + \beta$

b^m -symplectic manifolds

Vs (Pm I + M)

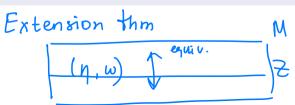
4 / 33

A b^m -form ω is called b^m -symplectic when it is closed and non-degenerate. As a Poisson manifold, b^m -symplectic manifold admits induced symplectic foliation:

- · The connected components of $M \setminus Z$ are open symplectic leaves of dimension 2n
- \cdot Z admits a corank 1 Poisson (cosymplectic) structure

Definition

A cosymplectic structure on a manifold Z of an odd dimension 2n-1 is a pair (η,ω) , where η is a closed 1-form and ω is a closed 2-form such that $\eta \wedge \omega^{n-1}$ is a volume form on Z.

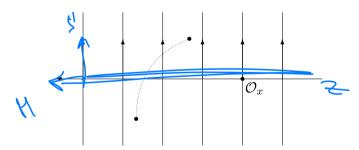


tr*n n d + T1*W 5- symplectic

Group Actions

Theorem (Braddell, Kiesenhofer, Miranda)

Let G be a compact Lie group acting on a compact b^m -symplectic manifold. Then G is of the form $S^1 \times H \mod \mathbb{Z}_k$.



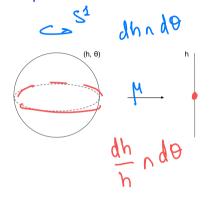
Hamiltonian Spaces

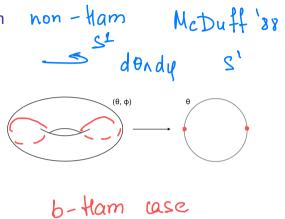
Definition

A Hamiltonian G-space (M, ω, μ) is a 2n-dimensional manifold M with G-action, invariant 2-form $\omega \in \Omega^2(M)$ and an equivariant moment map $\mu: M \to \mathfrak{g}^*$ such that

- (a1) ω is closed: $d\omega = 0$
- (a2) moment map condition: $\iota(\upsilon_{\xi})\omega = d\langle \phi, \xi \rangle, \forall \xi \in \mathfrak{g}$
- (a3) ω is non-degenerate
- \langle,\rangle natural pairing identifying $\mathfrak g$ and $\mathfrak g^*$ $\upsilon_{\mathcal E}$ generating vector field on M

Examples of actions under consideration





Here projection on h is a moment map for S^1 -action

Projection on θ can not be taken as a moment map since $\theta \notin \mathfrak{g}^*$

b^m -Hamiltonian Spaces

Definition

The action of G on a b^m -symplectic manifold (M,Z,ω) is called b^m -Hamiltonian if there exists a moment map $\mu:M\to b^m\mathcal{C}^\infty(M)\otimes \mathfrak{g}^*$ with

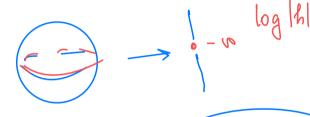
$$\iota(\upsilon_{\xi})\omega = \langle d\mu, \xi \rangle$$

where
$$b^m \mathcal{C}^{\infty}(M) = \left(\bigoplus_{i=1}^{m-1} t^{-i} \mathcal{C}^{\infty}(t)\right) \oplus^b \mathcal{C}^{\infty}(M)$$
 and $b\mathcal{C}^{\infty}(M) = \underbrace{\{a \log |t| + g, g \in \mathcal{C}^{\infty}(M)\}}$.

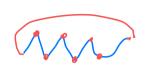
In other words, the action is b^m -Hamiltonian if it preserves b^m -symplectic form and $\iota_{v_{\mathcal{E}}}$ is exact.

b-Moment Maps

b-line [Guillemin, Miranda, Pires, Scott] V1 (arXiv)



b-line or b-circle



Superintegrable Systems

Definition

Let (M,Π) be a Poisson manifold of (maximal) rank 2r. An s-tuple of functions $F=(f_1,\ldots,f_s)$ on M is a non-commutative integrable system of rank r on (M,Π) if

- f_1, \ldots, f_s are independent (i.e. their differentials are independent on a dense open subset of M);
- The functions f_1, \ldots, f_r are in involution with the functions f_1, \ldots, f_s ;
- $r + s = \dim M$;
- The Hamiltonian vector fields of the functions f_1, \ldots, f_r are linearly independent at some point of M.

Viewed as a map, $F: M \to \mathbb{R}^s$ is called the moment map of (M, Π, F) .

When all the integrals commute, i.e. r = s, then we are dealing with the conventional case of a commutative integrable system.

Examples of Integrable Systems

Kepler problem

Non-commutative integrable systems on manifolds with boundary (N, ω_N) – any symplectic manifold, H_+ – upper hemisphere with $\omega_H = \frac{1}{h}dh \wedge d\theta$. (f_1, \ldots, f_s) – non-commutative integrable system of rank r on N. $(\log |h|, f_1, \ldots, f_s)$ – (smooth) non-commutative integrable system on the interior of $M = N \times H$.

On the double of M we have a non-commutative b-integrable system on $N \times S^2$.

- ullet Examples coming from b-Hamiltonian \mathbb{T}^r -actions
- The geodesic flow
- The Galilean group

Slice Theorem

G – compact Lie group

W - abstract smooth manifold

$$\mathcal{O}_x = \{y \in W | y = g \cdot x \text{ for some } g \in G\}$$
 — the orbit of x

$$G_x$$
 = $\{g \in G | g \cdot x = x\}$ – the stabilizer of x

 f_x – orbit map

$$f_x: G \longrightarrow W$$
$$g \longmapsto g \cdot x$$

$$g \longmapsto g \cdot g$$

 V_r - quotient vector space $T_rW/T\mathcal{O}_r$ (slice)

$$G/G_x \longrightarrow G \times_{G_x} V_x$$

$$\downarrow^{f_x} \qquad \qquad \downarrow^{\bar{f}_x}$$

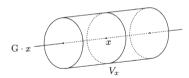
$$\mathcal{O}_x \longrightarrow W$$

Friday Fish 13 November 2020

Slice Theorem

Theorem (Palais)

There exists an equivariant diffeomorphism from an equivariant open neighborhood of the zero section in $G \times_{G_x} V_x$ to an open neighborhood of \mathcal{O}_x in W, which sends the zero section G/G_x onto the orbit $G \cdot x$ by the natural map f_x .



Symplectic (Hamiltonian) Slice Theorem

Theorem (Guillemin-Sternberg, Marle)

Let (M,ω,G) be a symplectic manifold together with a Hamiltonian group action. Let p be a point in M such that \mathcal{O}_p is contained in the zero level set of the moment map. Denote G_p the stabilizer and \mathcal{O}_p the orbit of p. There is a G-equivariant symplectomorphism from a neighbourhood of the zero section of the bundle $T^*G\times_{G_p}V_p$ equipped with symplectic model to a neighbourhood of the orbit \mathcal{O}_p .

Local Normal Form Theorem

Theorem (Guillemin-Sternberg)

Let (M, ω, μ) be a Hamiltonian G-space. For any $p \in M$, let H = Stab(p), let $K = Stab(\mu(p))$, and let V be the symplectic slice at p. There exists a neighbourhood of the orbit $G \cdot p$ which is equivariantly diffeomorphic to a neighborhood of the orbit $G \cdot [e, 0, 0]$ in

$$Y \coloneqq G \times H((\mathfrak{h}^0 \cap \mathfrak{k}^*) \times V).$$

In terms of this diffeomorphism, the moment map $\mu: M \to \mathfrak{g}^*$ may be written as

$$\mu([g,\gamma,v]) = Ad_g^*(\mu(p) + \gamma + \phi(v)),$$

where $\phi: V \to \mathfrak{h}$ is the moment map for the slice representation.

For \mathfrak{h} a subalgebra of \mathfrak{g} , $\mathfrak{h}^0 \subset \mathfrak{g}^*$ denotes its annihilator.

b^m -Symplectic Slice Theorem

Theorem

bm- Hamiltonian

Let $S^1 \times H$ be a compact group acting on a b^m -symplectic manifold (M, Z, ω) . Let \mathcal{O}_z be an orbit of the group contained in the critical set of M. Then there is a neighbourhood of the zero section of an associated bundle ${}^{b^m}T^*(H\times S^1)\times_{H_z\times\mathbb{Z}_d}V_z$ equipped with the b^m-symplectic model

$$\omega = \sum c_i \frac{dt}{t^i} \wedge d\theta + \pi^*(\omega_H)$$

where t is a defining function for Z, π is the projection $\pi: T^*S^1 \times T^*H \times_{H_x} V_x \to T^*H \times_{H_x} V_x$ and ω_H is the symplectic form on $T^*H \times_{H_x} V_z$ given by the symplectic slice theorem.

The moment map is given by

$$\mu = c_1 \log |t| + \sum_{i=1}^{m-1} c_i \frac{t^{-i}}{i} + \mu_0(x,y)$$
Friday Fish 13 November

Description of the Model

- SST: there is an H-equivariant neighbourhood U_H of \mathcal{O}_p^H which is equivariantly symplectomorphic to $T^*H \times_{H_p} V_p$ with the symplectic form ω_H on $T^*H \times_{H_p} V_p$.
- Consider

$$\omega = \sum_{i=1}^{m} c_i \frac{dt}{t^i} \wedge d\theta + \pi^*(\omega_H)$$

where $\pi: T^*S^1 \times T^*H \times_{H_p} V_p \to T^*H \times_{H_p} V_p$.

- Consider the quotient b^m -Poisson structure on $T^*(S^1 \times H) \times_{H_p \times \mathbb{Z}_d} V_p$ where \mathbb{Z}_d acts on T^*S^1 as the cotangent lift of \mathbb{Z}_d acting by translations on S^1 and by linear symplectomorphisms on V_p and H_p acts on T^*H by the cotangent lift of H_p acting on H by translations and by linear symplectomorphisms on V_p .
- This is b^m -symplectic model on the associated vector bundle $T^*(S^1 \times H) \times_{(H_p \times \mathbb{Z}_d)} V_p$.

b^m -cotangent lift

Given an action ρ of a Lie group G on a smooth manifold M, one can lift it to the $(b^m$ -)Hamiltonian action $\hat{\rho}$ of G on the cotangent bundle T^*M . $\hat{\rho}$ is given by $\hat{\rho}_g \coloneqq \rho_{g^{-1}}$ and π is a canonical projection from T^*M to M. The following diagram commutes:

$$T^*M \xrightarrow{\hat{\rho}_g} T^*M$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$M \xrightarrow{\rho_g} M$$

b^m -cotangent lift II

Having the action $S^1 \times H \curvearrowright T^*\mathbb{S}^1 \times T^*H$ we consider the coordinates $(\underline{a}, \theta, x_1, \ldots, x_n, y_1, \ldots, y_n)$ with $\theta \in S^1, \{x_i\} \in H$ and $a, \{y_i\} \in \mathbb{R}$. Here H is itself an (n-1)-dimensional manifold and T^*H is equipped with standard Liouville one-form λ_H .

$$L = \sum_{1}^{m-1} c_i \frac{d\theta}{a^i} + c_0 \log a d\theta + \sum_{1}^{n-1} y_j dx_j$$

The action of $S^1 \times H$ on its cotangent bundle is Hamiltonian with the moment map given by contraction of Δ with the fundamental vector field:

$$\langle \mu(p), X \rangle \coloneqq \langle L_p, X^{\#}|_p \rangle$$

b^m -cotangent lift III

We should prove that the Liouville form is invariant under this action. L splits in two: λ_H and λ . One has two show that λ_H is invariant under S^1 -action and for λ we already have it proven from the standard symplectic cotangent lift.

The moment map then is given by

$$\mu = c_1 \log |a| + \sum_{i=1}^{m-1} c_i \frac{a^{-i}}{i} + \mu_0(x, y)$$

$$\tilde{\omega} = \sum_{0}^{m-1} \frac{c_i}{a_1^{i+1}} d\theta_1 \wedge da_1 + \sum_{1}^{n} dx_j \wedge dy_j$$

Desingularization

Theorem (Guillemin-Miranda-Weitsman)

Let ω be a b^m -symplectic structure on a compact manifold M and let Z be its critical hypersurface.

- If m is even, there exists a family of symplectic forms ω_{ε} which coincide with the b^m -symplectic form ω outside an ϵ -neighborhood of Z and for which the family of bi-vector fields $(\omega_{\varepsilon})^{-1}$ converges in the \mathcal{C}^{2m-1} -topology to the Poisson structure ω^{-1} as $\varepsilon \to 0$.
- If m is odd, there exists a family of folded symplectic forms ω_{ε} which coincide with the b^m -symplectic form ω outside an ε -neighborhood of Z.

Definition

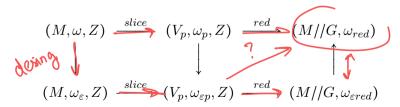
The pair $(M^{2n}, \omega \in \Omega^2(M))$ is called a folded symplectic manifold if the top power ω^n vanishes transversally on a folding hypersurface Z and its restriction to that submanifold has maximal rank.

Marsden-Weinstein Reduction

Theorem (Hamiltonian reduction)

Let (M, ω, μ) be a Hamiltonian G-space for a compact Lie group G. Let $i : \varphi^{-1}(0) \hookrightarrow M$ be the inclusion map. Assume that G acts freely on $\mu^{-1}(0)$. Then

- the orbit space $M_{red} = \mu^{-1}(0)/G$ is a manifold,
- $\pi: \mu^{-1}(0) \to M_{red}$ is a principal G-bundle,
- there is a symplectic form ω_{red} on M_{red} satisfying $i^*\omega = \pi^*\omega_{red}$.



What if the action is non-Hamiltonian?

[Ortega-Ratiu'01] Symplectic Slice Theorem arXiv:math/0110084

Consider symplectic actions that are tubewise Hamiltonian, chu map and cylinder-valued moment maps. Only works for abelian case. Easily extends previous result for the singular Hamiltonian actions.

[Bott-Tolman-Weitsman'02] quasi-Hamiltonian Slice Theorem arXiv:math/0210036

Consider quasi-Hamiltonoan spaces. By cross-section theorem show that action on the slice corresponds to some associated Hamiltonian space and brings it back to the q-Ham normal form theorem.

quasi-Hamiltonian Spaces

Definition

A quasi-Hamiltonian G-space is a 2n-dimensional manifold M with G-action, invariant 2-form σ and equivariant moment map $\Phi: M \to G$ such that:

- (b1) σ is equivariantly closed: $d\sigma = -\Phi^* \chi$
- (b2) moment map condition: $\iota(\upsilon_{\xi})\sigma = \frac{1}{2}\Phi^*\left(\theta^l + \theta^r, \xi\right)$
- (b3) σ is weakly non-degenerate

where θ^l and θ^r are left- and right-invariant Maurer-Cartan forms and $\chi \in \Omega^3_G(G)$ is canonical closed bi-invariant 3-form.

In matrix representation, $\theta^l = g^{-1}dg$, $\theta^r = dgg^{-1}$ and $\chi = \frac{1}{12}(\theta, [\theta, \theta])$

Examples of quasi-Hamiltonian Spaces

- Hamiltonian G-spaces
- Hamiltonian LG-spaces
- Conjugacy classes $C \subset G$.
- Space of flat connections $\mathcal{A}(\Sigma)$ on a manifold with boundary $\partial \Sigma = S^1$ reduced with respect to the action of normal subgroup of gauge group $\mathcal{G}(\Sigma,\partial\Sigma) = \{\gamma \in \mathcal{G}(\Sigma) | \gamma|_{\partial\Sigma} = e\}$

From Hamiltonian to quasi-Hamiltonian

$$\exp_s : \mathfrak{g} \to G, \ \exp_s(\eta) = \exp(s\eta)$$

We take a new form $\breve{\omega} \in \Omega^2(\mathfrak{g})$

$$\breve{\omega} = \frac{1}{2} \int_{0}^{1} (\exp_{s}^{*} \bar{\theta}, \frac{\partial}{\partial s} \exp_{s}^{*} \bar{\theta}) ds$$

 $\breve{\omega}$ is *G*-invariant and satisfies $d\breve{\omega} = -\exp^* \chi$.

$$\mu = \exp \phi$$

$$\omega\coloneqq\sigma+\breve{\omega}$$

 (M,ω,μ) is a quasi-Hamiltonian space

quasi-Hamiltonian Local Normal Form Theorem

Theorem (Bott-Tolman-Weitsman)

Let (M, σ, Φ) be a quasi-Hamiltonian G-space. For any $p \in M$, let H = Stab(p), $K = Stab(\Phi(p))$, and V be the symplectic slice at p. There exists a neighbourhood of the orbit \mathcal{O}_p which is equivariantly diffeomorphic to a neighborhood of the orbit $G \cdot [e, 0, 0]$ in

$$Y := G \times_H ((\mathfrak{h}^{\perp} \cap \mathfrak{k}) \times V).$$

In terms of this diffeomorphism, the G-valued moment map $\Phi: M \to G$ may be written as $\Phi([g,\gamma,v]) = Ad_g(\Phi(p)\exp(\gamma+\phi(v)))$, where $\phi: V \to \mathfrak{h}^* \simeq \mathfrak{h}$ is the moment map for the slice representation.

quasi-Hamiltonian Local Normal Form Theorem

Let (M,σ,Φ) be a quasi-Hamiltonian G-space. Let $U\subset \mathfrak{g}$ be a connected neighborhood of 0 so that the exponential map is a diffeomorphism on U, and let $V=\exp U$. Then there exists a Hamiltonian G-space (N,ω,ν) and an equivariant diffeomorphism $\psi:N\to\Phi^{-1}(V)$, so that the following diagram commutes

$$\begin{array}{ccc} N & \stackrel{\nu}{\longrightarrow} & \mathfrak{g}^* \simeq \mathfrak{g} \\ \downarrow^{\psi} & & \downarrow^{\exp} \\ & \Phi^{-1}(V) & \stackrel{\Phi|_{\Phi}^{-1}(V)}{\longrightarrow} & g \end{array}$$

Sketch of proof:

 $\nu \coloneqq \log \Phi \text{ satisfies the moment map condition} \\ \omega = \sigma - \Phi^* \log^* \breve{\omega} \text{ s closed and non-degenerate}$

quasi-Hamiltonian Local Normal Form Theorem III

Theorem (Cross-Section)

Let (M, σ, Φ) be a quasi-Hamiltonian G-space. Given $g \in G$, let V_g be a slice for the action of G on itself at g, and let $Y_g \coloneqq \Phi^1(V_g)$. Let K = Z(g) be the centralizer of g. The quasi-Hamiltonian cross-section $(Y_g, \sigma|_{Y_g}, \Phi|_{Y_g})$ is a quasi-Hamiltonian K-space.

Sketch of proof of the normal form theorem:

Consider $p \in M$, $g := \Phi(p)$, V_q – slice for G-action at p.

 $(Y_g,\sigma|_{Y_g},\Phi|_{Y_g})$ is a q-Ham Z(g) space (by C-S thm)

Define $\psi: Y_g \to K$ as $\psi(m) = g^{-1}\Phi(m)$

 $(Y_g,\sigma|_{Y_g},\psi)$ is a q-Ham Z(g) space, $\psi(p)$ = e

Now consider (N, ω, ν) , slice at p in N coincides with slice at p in Y_{ζ} so we can pass to symplectic slice theorem.

quasi-Hamiltonian Local Normal Form Theorem IV

Applying slice theorem to (N, ω, ν) .

N is locally diffeomorphic to $Z(g) \times_H ((\mathfrak{h}^0 \cap \mathfrak{k}^* \times V))$

The diffeomorphism sends the moment map ν to the map

$$\nu \to ([k, \alpha, v] \to k \cdot (\alpha + \phi(v))),$$

where ϕ is the moment map for the slice representation.

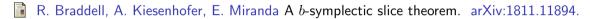
Last step is to exponentiate this map.

References I

- G. Scott The geometry of b^k -manifolds Journal of Symplectic Geometry, 14.1 (2016) 71–95.
- D. McDuff. The moment map for circle actions on sympletic manifolds. *Journal of Geometry and Physics*, 5.2 (1988): 149-160.
- A. Kiesenhofer, E. Miranda Non-commutative integrable systems on *b*-symplectic manifolds. *Regular and Chaotic Dynamics*, 21.6 (2016): 643-659.
- A. Alekseev, A. Malkin, E. Meinrenken Lie group valued moment maps. *Journal of Differential Geometry*, 48 (1998): 445.
- V. Guillemin, E. Miranda, J. Weitsman Desingularizing b^m -symplectic Structures. *International Mathematics Research Notices*, 2019.10 (2019): 2981-2998.

Friday Fish 13 November 2020

References II



- ▶ J. Ortega, T. Ratiu The symplectic slice theorem. *Momentum Maps and Hamiltonian Reduction*, 2004. 271-300.
- V. Guillemin, E. Miranda, Ana. Pires, G. Scott Toric actions on b-symplectic manifolds arXiv:1309.1897v1.
- R. Bott, S. Tolman, J. Weitsman Surjectivity for Hamiltonian loop group spaces. *Inventiones mathematicae*, 155.2 (2004): 225-251.

Thank you for your attention!

