Lie groupoids and Logarithmic connections

Francis Bischoff

Exeter College, University of Oxford

Friday Fish seminar, August 2020

Support for research

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Table of Contents

1 Introduction

- 2 Local theory
- 3 Global Theory

Plan of talk

Study flat connections on principal bundles with logarithmic singularities, using tools from the theory of Lie groupoids.

Principal bundles

- \blacksquare $\pi: P \to X$ a principal *G*-bundle,
- $lue{G}$ a connected complex reductive group,
- Main example: $G = GL(n, \mathbb{C})$. Principal bundles in this case are equivalent to vector bundles.

Connections

A connection on P is a bundle map

$$\nabla: TX \to TP/G$$

such that $d\pi \circ \nabla = id$.

- Locally $\nabla = d + A$, $A \in \Omega^1(X, \mathfrak{g})$,
- At(P) = TP/G has the structure of a Lie algebroid, the Atiyah algebroid. A connection ∇ is flat if ∇ is a Lie algebroid morphism.

Logarithmic singularities

- $D \subset X$ complex codimension 1 submanifold.
- T_X ($-\log D$): Lie algebroid of vector fields on X which are tangent to D.
- lacksquare A flat connection with logarithmic singularities along D is a Lie algebroid homomorphism

$$\nabla: T_X(-\log D) \to At(P),$$

such that $\nabla \circ d\pi = \rho$.

• Locally $\nabla = d + A \frac{dz}{z} + B dx$.

Lie theoretic perspective

There are integrations of the various algebroids:

- $TX \rightsquigarrow \Pi(X)$ (ssc)
- $T_X(-\log D) \rightsquigarrow \Pi(X,D) \text{ (ssc)}$
- $At(P) \rightsquigarrow \mathcal{G}(P) = (P \times P)/G$.

Lie's Second theorem (Mackenzie-Xu, Moerdijk-Mrčun):

Lie theoretic perspective

Theorem

Let $\mathcal G$ be a source simply connected Lie groupoid, with Lie algebroid A. There is an equivalence of categories

$$Rep(A, G) \cong Rep(G, G).$$

Therefore, we study the representation theory of $\Pi(X, D)$.

Outline

1 Local theory : $Rep(\Pi(\mathbb{A},0),G)$

 $\ \ \, \textbf{Global theory}: \ \, \mathsf{Rep}(\Pi(X,D),G) \\$

Table of Contents

1 Introduction

- 2 Local theory
- 3 Global Theory

Local theory: ODE with Fuchsian singularity

We study differential equations on \mathbb{A} of the form

$$z\frac{ds}{dz}=A(z)s,$$

where $A : \mathbb{A} \to \mathfrak{g}$, and $s : \mathbb{A} \to G$ is a fundamental solution.

Normal forms and classification results due to Levelt, Turrittin, Babbitt and Varadarajan, Kleptsyn and Rabinovich, Boalch, etc.

Normal form and classification

$$z\frac{ds}{dz}=A(z)s,$$

■ Try to simplify by finding $s = g^{-1}t$, for $g : \mathbb{A} \to G$ such that

$$z\frac{dt}{dz}=A(0)t.$$

- Solution: $s(z) = g^{-1}z^{A(0)}$.
- Action of gauge transformation: $g * A = gAg^{-1} + zg'g^{-1}$.

Normal form and classification

$$z\frac{ds}{dz}=A(z)s,$$

■ Want to find g such that:

$$gAg^{-1} + zg'g^{-1} = A(0).$$

- Solve order by order in z: $A = \sum_{i=0}^{\infty} z^i A_i$.
- At stage k, use $g_k = \exp(z^k X_k)$. Then

$$g_k * A = A_0 + z^k (A_k + [X_k, A_0] + kX_k) + O(z^{k+1}).$$

Let
$$X_k = (ad_{A_0} - k)^{-1}(A_k)$$
.

■ Then $g = \Pi_i g_i$ solves the problem.

Resonance

If two eigenvalues of A_0 differ by a non-zero integer k, then $(ad_{A_0} - k)(X_k) = A_k$ may not admit a solution. The best we can hope for is the Levelt normal form

$$A(z) = S + \sum_{i \geq 0} z^i N_i,$$

where S semisimple, N_i nilpotent, and $[S, N_i] = iN_i$.

Existing classifications

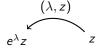
- Classification in terms of analytic equivalence of Levelt normal form (Babbitt and Varadarajan, Kleptsyn and Rabinovich).
- Classification in terms of monodromy operator and compatible Levelt filtration/ parabolic subgroup (Boalch).

These are difficult to make functorial because they use non-canonical normal forms.

Lie theoretic approach

Logarithmic connections on $\ensuremath{\mathbb{A}}$ are equivalent to representations of

$$\Pi(\mathbb{A},0)\cong\mathbb{C}\ltimes\mathbb{A}\rightrightarrows\mathbb{A}.$$



We study the category $\operatorname{Rep}(\mathbb{C} \ltimes \mathbb{A}, G)$ whose objects consist of a principal G-bundles $P \to \mathbb{A}$, and homomorphisms $\Phi : \mathbb{C} \ltimes \mathbb{A} \to \mathcal{G}(P)$.

Monodromy

- The monodromy of a representation (P, Φ) is $M(z) = \Phi(2\pi i, z)$.
- M is an automorphism of Φ .

Residue

■ Groupoid homomorphism

$$\iota: \mathbb{C} \to \mathbb{C} \ltimes \mathbb{A}, \qquad \lambda \mapsto (\lambda, 0).$$

- Pullback functor ι^* : Rep($\mathbb{C} \ltimes \mathbb{A}, G$) \to Rep(\mathbb{C}, G).
- $\iota^*(\Phi)(\lambda) = \exp(\lambda R)$, for $R \in \mathfrak{aut}_G(P_0)$, the residue of Φ .

Trivial representations

Groupoid homomorphism

$$p: \mathbb{C} \ltimes \mathbb{A} \to \mathbb{C}, \qquad (\lambda, z) \mapsto \lambda.$$

- Pullback functor p^* : Rep(\mathbb{C}, G) \to Rep($\mathbb{C} \ltimes \mathbb{A}, G$).
- Representations in the image of p^* are trivial.

Linear approximation

$$L = p^* \circ \iota^* : \mathsf{Rep}(\mathbb{C} \ltimes \mathbb{A}, G) \to \mathsf{Rep}(\mathbb{C} \ltimes \mathbb{A}, G).$$

This functor takes an arbitrary representation and outputs the trivial representation determined by its residue.

Linearization

Definition

A linearization of a representation is an isomorphism

$$T:(P_0\times \mathbb{A},L(\Phi))\to (P,\Phi).$$

The linearization is strict if $\iota^*(T) = id$.

Can be thought of as a regularized parallel transport

$$T(1): P_0 \rightarrow P_1.$$

- Linearizations encode the asymptotic nature of fundamental solutions at the singularity, and hence are closely related to the Levelt filtration.
- Linearizations do not always exist because of resonance.

Recall: Jordan Chevalley decomposition

An arbitrary element $g \in G$ has a unique decomposition of the form

$$g = su$$
,

where s is semisimple, u is unipotent $((u-1)^k = 0)$, and su = us.

Linearization

Lemma

A representation Φ is linearizable if it has semisimple monodromy.

Proof. Recall the Levelt normal form for the associated differential equation:

$$z\frac{ds}{dz} = As,$$
 $A(z) = S + \sum_{i\geq 0} z^i N_i,$

where S semisimple, N_i nilpotent, and $[S, N_i] = iN_i$. Monodromy is given by

$$M(1) = \exp(2\pi i S) \exp(2\pi i N),$$

where $N = \sum_{i \geq 0} N_i$. Since M is semisimple, N = 0.

Recall: Groupoid 1-cocycles

■ A 1-cocycle for $\mathbb{C} \ltimes \mathbb{A}$, valued in a representation (P, Φ) , is a section σ of $t^*Aut_G(P)$ over $\mathbb{C} \ltimes \mathbb{A}$, which satisfies the following cocycle condition

$$\sigma(\mu, e^{\lambda}z)\Phi(\mu, e^{\lambda}z)\sigma(\lambda, z) = \sigma(\mu + \lambda, z)\Phi(\mu, e^{\lambda}z),$$

for all
$$(\mu, \lambda, z) \in \mathbb{C} \times \mathbb{C} \times \mathbb{A}$$
.

■ Given a representation Φ , and a cocycle σ , then $\sigma \circ \Phi$ is a new representation.

Untwisting cocycle

Theorem

Let (P, Φ) be a representation, and let U denote the unipotent part of its monodromy. Then the following defines a unipotent groupoid 1-cocycle

$$\sigma_{\Phi}(\lambda, z) = \exp(\frac{-\lambda}{2\pi i} log(U(e^{\lambda}z))).$$

The deformed representation

$$\Phi_{s} := \sigma_{\Phi} \circ \Phi,$$

has semisimple monodromy.

This defines a functorial Jordan Chevalley decomposition for representations.

Another look at resonance

Given a representation (P, Φ) , the semisimple part Φ_s admits linearizations.

- The space of linearizations $\nu(\Phi_s)$ is a right torsor for $Aut(L(\Phi_s))$.
- The space of strict linearizations $\nu_0(\Phi_s)$ is a right torsor for $Aut_0(L(\Phi_s))$, the subgroup of automorphisms which are the identity above $0 \in \mathbb{A}$.
- $Aut_0(L(\Phi_s))$ is non-trivial if and only if the representation is resonant.

Another look at resonance

There is a split short exact sequence

$$1 \to \text{Aut}_0(\text{L}(\Phi_s)) \to \text{Aut}(\text{L}(\Phi_s)) \to \text{Aut}(\iota^*\Phi_s) \to 1.$$

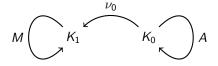
The splitting of this sequence is given by p^* .

Another look at resonance

- A linearization of Φ is equivalent to a linearization of Φ_s which takes U to $\iota^*(U)$.
- Choose an arbitrary linearization of Φ_s , which allows us to view $U \in Aut(L(\Phi_s))$. Then we are looking for an element of $Aut(L(\Phi_s))$ which conjugates U to $\iota^*(U)$.

Classification

Define a category $F(\mathbb{C}, G)$, whose objects are (M, K_1, ν_0, K_0, A)



- **11** K_0 and K_1 are right G-torsors,
- $2 A = S + N \in \mathfrak{aut}_G(K_0),$
- $u_0 \subset \operatorname{Hom}_G(K_0, K_1), \text{ a right } \operatorname{Aut}_0(e^{\lambda S})\text{-torsor},$
- **4** $M \in Aut_G(K_1)$, which stabilizes $\nu_0 * Aut(e^{\lambda S})$

such that $\pi(M) = \exp(2\pi i A)$.

Classification

Theorem

There is an equivalence of categories

$$\mathcal{L}: \mathsf{Rep}(\mathbb{C} \ltimes \mathbb{A}, G) \to F(\mathbb{C}, G),$$

 $(P, \Phi) \mapsto (M(1), P_1, \nu_0(\Phi_s), P_0, Res(\Phi)).$

This functor has an explicit inverse $\mathcal{R}: F(\mathbb{C},G) \to \operatorname{Rep}(\mathbb{C} \ltimes \mathbb{A},G)$.

Table of Contents

1 Introduction

- 2 Local theory
- 3 Global Theory

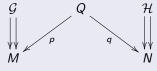
Global Theory: Representations of $\Pi(X, D)$

- We study the category of flat connections on X with logarithmic singularities on $D \subset X$ via the representations of $\Pi(X, D)$.
- Existing results due to Deligne, Simpson, Boalch, Ogus.
- Idea: Use Morita equivalence to reduce the representation theory of $\Pi(X, D)$ to the representation theory of $\mathbb{C} \ltimes \mathbb{A}$ and $\pi_1(X \setminus D)$.

Morita equivalence

Definition

A *Morita equivalence* between Lie groupoids $\mathcal{G} \rightrightarrows \mathcal{M}$ and $\mathcal{H} \rightrightarrows \mathcal{N}$ is a bi-principal $(\mathcal{G},\mathcal{H})$ bi-bundle.



Morita equivalence

Definition

A Morita equivalence Q between $\mathcal G$ and $\mathcal H$ induces an equivalence of categories

$$\mathsf{Rep}(\mathcal{G}, \mathcal{G}) \cong \mathsf{Rep}(\mathcal{H}, \mathcal{G})$$

Morita equivalence

A useful method for constructing Morita equivalences is the following result.

Criterion for Morita equivalent subgroupoid

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid with Lie algebroid $A \to M$, and $N \subseteq M$ an embedded submanifold. If N intersects every orbit of \mathcal{G} and is transverse to A, then $\mathcal{G}|_N$ is a Lie subgroupoid of \mathcal{G} , which is Morita equivalent to \mathcal{G} .

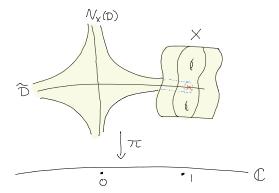
Deformation space

Construct a larger space

$$\pi: Z = \mathcal{D} \cup (X \times B(1, r)) \rightarrow \mathbb{C}$$

where $\mathcal D$ is the deformation to the normal cone of D in a tubular neighbourhood $D\subset U\subset X$.

Deformation space Z



- There is a codimension 1 submanifold $\tilde{D} \subseteq Z$.
- $\pi^{-1}(1) = (X, D) \text{ and } \pi^{-1}(0) = (N_X(D), 0).$

Constructing the Morita equivalence

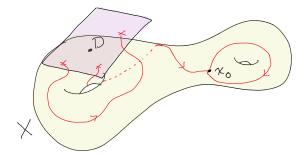
The groupoid $\Pi(Z, \tilde{D})$ has two Morita equivalent subgroupoids:

- $\blacksquare \Pi(Z,\tilde{D})|_X \cong \Pi(X,D)$
- $\mathcal{N} := \Pi(Z, \tilde{D})|_{N_X(D)|_d \cup \{x_0\}}$, determined by choice of $d \in D$ and $x_0 \in X \setminus D$.

Therefore

$$\operatorname{\mathsf{Rep}}(\Pi(X,D),G) \cong \operatorname{\mathsf{Rep}}(\Pi(Z,\tilde{D}),G) \cong \operatorname{\mathsf{Rep}}(\mathcal{N},G).$$

$\mathcal{N}=$ Groupoid of paths with tangential basepoints

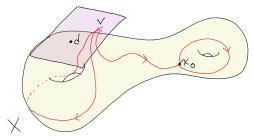


Subgroupoids of ${\cal N}$

Choose non-zero $v \in N_X(D)$.

- $\blacksquare \Pi(X,D)|_{\bar{v}} := \mathcal{N}|_{\{v,x_0\}}$
- $A(N_X(D)|_d) \ltimes N_X(D)|_d$, where

$$0 \to \mathbb{Z} \to \pi(N_X(D)^{\times}, v) \times \mathbb{C} \to A(N_X(D)|_d) \to 0.$$



Groupoid of paths with tangential basepoints

Theorem

Pushout of holomorphic Lie groupoids

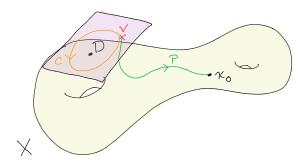
$$\pi(N_X(D)^{\times}, v) \longrightarrow \Pi(X \setminus D)_{\bar{v}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A(N_X(D)|_d) \ltimes N_X(D)|_d \longrightarrow \mathcal{N}$$

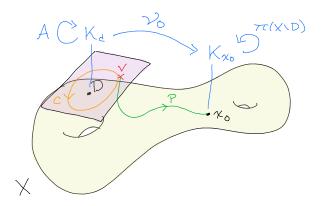
Classification

- Let $p:[0,1] \to X \setminus D$, such that p(0) = d, p'(0) = v, $p(1) = x_0$.
- Let c denote a loop in the fibre $N_X(D)^{\times}|_d$, and let $I = pcp^{-1} \in \pi_1(X \setminus D, x_0)$.

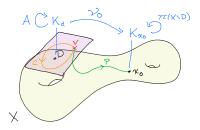


Classification

Define category $F(\pi(X \setminus D, x_0), G)$ with objects $(\Phi, K_{x_0}, \nu_0, K_d, A)$



$(\Phi, K_{x_0}, \nu_0, K_d, A)$



- **11** K_d and K_{x_0} are right G-torsors,
- $u_0 \in \operatorname{Hom}_G(K_d, K_{x_0})$ is a right $\operatorname{Aut}_0(e^{\lambda S})$ -torsor,
- Φ : π₁($X \setminus D$) → Aut_G(K_{x₀}) is a homomorphism,

such that $\Phi(I)$ stabilizes $\nu_0 * \operatorname{Aut}(e^{\lambda S})$, and $\pi(\Phi(I)) = \exp(2\pi i A)$.

Classification

Theorem

There is an equivalence of categories

$$\operatorname{\mathsf{Rep}}(T_X(-\log D),G)\cong F(\pi(X\setminus D,x_0),G).$$

Thank You