Hyperkähler realizations of holomorphic Poisson surfaces

Maxence Mayrand

December 11, 2020

Overview 1/16

Definition (Calabi 1979)

A hyperkähler manifold is a Riemannian manifold (M, g) with three complex structures I, J, K that are Kähler with respect to g and satisfy the quaternionic identities $I^2 = J^2 = K^2 = IJK = -1$.

Hyperkähler ⇒ holomorphic symplectic

- 3 real symplectic forms: $\omega_I = g(I \cdot, \cdot), \ \omega_J = g(J \cdot, \cdot), \ \omega_K = g(K \cdot, \cdot).$
- $\Omega = \omega_I + i\omega_K$ is holomorphic symplectic with respect to *I*.

Converse. Compact holomorphic symplectic and Kähler \implies hyperkähler (No such general result for non-compact manifolds.)

Symplectic realizations. Every holomorphic Poisson manifold X integrates to a holomorphic symplectic local groupoid $M \rightrightarrows X$. Is M hyperkähler on a neighbourhood of the identity section?

This talk. Yes, if X is compact Kähler and $\dim_{\mathbb{C}} X = 2$.

Proof. Lift special deformations of Poisson structures to build a twistor space. e.g. Zero Poisson structure \rightarrow Feix-Kaledin hyperkähler structure on T^*X .

Holomorphic symplectic realizations

- A holomorphic Poisson manifold is a complex manifold X together with a holomorphic bivector field π such that $\{f,g\} := \pi(df,dg)$ is a Lie bracket on \mathcal{O}_X .
- A (strict) symplectic realization of (X, π) is a holomorphic symplectic manifold (M, Ω) together with a surjective holomorphic Poisson submersion $s: (M, \Omega) \to (X, \pi)$ and a Lagrangian section $X \hookrightarrow M$.
- Holomorphic Karasev-Weinstein theorem. Every holomorphic Poisson manifold has a symplectic realization. Proofs. Laurent-Gengoux, Stiénon, Xu: Integration of holomorphic Poisson is equivalent to integration of the underlying real Poisson. Broka—Xu: Holomorphic Crainic-Mărcuţ formula.
- The restriction of M to a neighbourhood of X is still a symplectic realization, and all symplectic realizations are isomorphic near X.
- After restricting to a neighbourhood of X, M has a unique structure of a holomorphic symplectic local groupoid:

$$M \xrightarrow{\begin{array}{c} s \text{ (Poisson)} \\ \hline \\ t \text{ (anti-Poisson)} \end{array}} X$$

$$\text{id (Lagrangian)}$$

- ▶ $M \Rightarrow X$ holomorphic local Lie groupoid
- ightharpoonup Ω holomorphic symplectic form on M
- ▶ $\Gamma_{\text{mult}} \subseteq M \times M \times M^-$ complex Lagrangian

Example 1. The zero Poisson structure

X complex manifold, $\pi = 0$

Symplectic realization.

- $M = T^*X$ with canonical holomorphic symplectic form Ω_{can}
- $s: T^*X \to X$ bundle map
- id : $X \hookrightarrow T^*X$ zero section

Theorem (Feix 1999, Kaledin 1999)

For any real-analytic Kähler form ω on X, there is a unique hyperkähler structure (g, I, J, K) on a neighbourhood of the zero section of T^*X such that $\omega_I|_X = \omega$ and $\omega_J + i\omega_K = \Omega_{can}$.

Proof (Feix). Twistor theory.

Remarks.

- The hyperkähler structure might not extend to all of T^*X . (e.g. if X is a Riemann surface of constant negative curvature.)
- Every Kähler class contains a real-analytic representative.

Conclusion. If X is Kähler then $(X, \pi = 0)$ has a hyperkähler realization.

 (X,Ω) holomorphic symplectic manifold, $\pi=\Omega^{-1}$

Symplectic realization.

- $M = X \times X$ (pair groupoid), with $(\Omega, -\Omega)$.
- $s: X \times X \to X$, s(x, y) = x
- $id: X \hookrightarrow X \times X$, id(x) = (x, x).

Theorem (Beauville 1983)

If (X,Ω) is a compact holomorphic symplectic Kähler manifold, then there is a hyperkähler structure (g,I,J,K) on X such that $\Omega = \omega_J + i\omega_K$.

Proof. Yau's solution to the Calabi conjecture + Bochner's principle

Conclusion. If (X, Ω) is holomorphic symplectic and is compact Kähler then $(X, \pi = \Omega^{-1})$ has a hyperkähler realization.

 $X = \mathfrak{g}^*$, where \mathfrak{g} is a complex semisimple Lie algebra

Symplectic realization.

- T^*G , where $Lie(G) = \mathfrak{g}$.
- $s: T^*G = G \times \mathfrak{g}^* \to \mathfrak{g}^* : (g, \xi) \mapsto \xi$
- id: $\mathfrak{g}^* = T_1^*G \hookrightarrow T^*G$.

Theorem (Kronheimer 1988)

There is a complete hyperkähler structure on T^*G .

There is a complete hyperkamer structure on T. G.

$$\mathcal{M} = \underset{(\text{the one-dimensional reduction sto Nahm's equations on }[0,1]}{\text{figure of the one-dimensional reduction of the anti-self-dual Yang-Mills equations)}} \\ = \{(\alpha,\beta):[0,1] \rightarrow \mathfrak{g} \times \mathfrak{g}: \frac{\dot{\beta}+[\alpha,\beta]=0}{\dot{\alpha}+\dot{\alpha}^*+[\alpha,\alpha^*]+[\beta,\beta^*]=0}\}/C^{\infty}([0,1],K)_0. \\ = \{(\alpha,\beta):[0,1] \rightarrow \mathfrak{g} \times \mathfrak{g}: \dot{\beta}+[\alpha,\beta]=0\}/C^{\infty}([0,1],G)_0 \qquad (\star) \}$$

Proof. $G = K_{\mathbb{C}}$, K compact. Infinite-dimensional hyperkähler quotient:

$$=T^*G$$
 (*) is the Cattaneo–Felder construction of the groupoid of \mathfrak{g}^* as an

(*) is the Cattaneo-Felder construction of the groupoid of \mathfrak{g}^* as an infinite-dimensional symplectic reduction of the space of cotangent paths.

Holomorphic Poisson structures with hyperkähler realizations:

- Zero. Proof. Twistor theory.
- Non-degenerate. Proof. Calabi conjecture.
- Kirillov-Kostant-Souriau. Proof. Gauge theory.

Question. Does every holomorphic Poisson Kähler manifold X have a hyperkähler realization $M \to X$?

This talk. Yes, if X is compact and $\dim_{\mathbb{C}} X = 2$.

Proof. Twistor theory and deformations of holomorphic Poisson structures.

A hyperkähler structure is a Riemannian metric g with three complex structures I, J, K that are Kähler with respect to g and satisfy IJK = -1. Idea. Encode it with purely holomorphic data on an auxiliary space.

- $x \in S^2 \subseteq \mathbb{R}^3 \implies I_x := x_1I + x_2J + x_3K$ complex structure
- $Z = M \times S^2$ with $I_{(q,x)} = (I_x, I_{S^2})$ is a complex manifold
- $p: Z \to S^2 = \mathbb{CP}^1$ holomorphic submersion
- I_X is Kähler with respect to g with Kähler form $\omega_X := x_1\omega_I + x_2\omega_J + x_3\omega_K$.
- $x,y,z\in S^2$ orthonormal basis $\Longrightarrow (I_x,\omega_y+i\omega_z)$ holomorphic symplectic. Identifying $x\in S^2\setminus\{N\}$ with $\zeta\in\mathbb{C}\subseteq\mathbb{CP}^1$, $\omega_y+i\omega_z$ is a multiple of $\Omega_\zeta:=(\omega_I+i\omega_K)+2i\zeta\omega_I+\zeta^2(\omega_I-i\omega_K)$.

Then,
$$(I_{\zeta}, \Omega_{\zeta})$$
 are holomorphic symplectic structures for all $\zeta \in \mathbb{C}$.
 Ω_{ζ} extends to a global holomorphic section Ω of $\Lambda^{2}(\ker dp)^{*} \otimes p^{*}\mathcal{O}(2)$.

- $\tau: Z \to Z: (q, x) \mapsto (q, -x)$ is a real structure.
- Points $q \in M$ are identified with holomorphic sections $x \mapsto (q, x)$ of p fixed by τ with normal bundle $N \cong \mathcal{O}(1)^{\oplus 2n}$, called **real twistor lines**.

Definition

A hyperkähler twistor space is a complex manifold Z of dimension 2n + 1 together with

- a surjective holomorphic submersion $p: Z \to \mathbb{CP}^1$,
- a global holomorphic section Ω of $\Lambda^2(\ker dp)^*\otimes p^*\mathcal{O}(2)$ which restricts to a holomorphic symplectic form on each fibre $Z_{\zeta}=p^{-1}(\zeta)$.
- a real structure $\tau: Z \to Z$ covering the antipodal map $\mathbb{CP}^1 \to \mathbb{CP}^1$ and such that $\tau^* \bar{\Omega} = -\Omega$.

A **real twistor line** is a holomorphic section of p which is fixed by τ and whose normal bundle is isomorphic to $\mathcal{O}(1)^{\oplus 2n}$.

Theorem (Hitchin-Karlhede-Lindström-Roček 1987)

The space \mathcal{M} of real twistor lines of a hyperkähler twistor space is a 4n-dimensional hyperkähler manifold. Moreover, the evaluation maps

$$\mathcal{M} \longrightarrow Z_{\zeta}, \quad s \longmapsto s(\zeta)$$

are local diffeomorphisms.

Hyperkähler metrics near Lagrangian submanifolds

Symplectic realization $M \to X$, $id : X \hookrightarrow M$ complex Lagrangian. Goal. Construct a hyperkähler structure on a neighbourhood of X in M.

Characterization of hyperkähler structures near complex Lagrangians:

Theorem (M.)

Let (M, I_0, Ω_0) be a holomorphic symplectic manifold and $X \subseteq M$ a complex Lagrangian submanifold. Suppose that there is a deformation (I_ζ, Ω_ζ) of holomorphic symplectic structures, for small $\zeta \in \mathbb{C}$, such that $\Omega_\zeta|_X = \zeta \omega$ for some Kähler form ω on X. Then, there is a hyperkähler structure (g, I, J, K) on a neighbourhood of X in M such that $\omega_I|_X = \omega$, $I = I_0$, and $\omega_J + i\omega_K = \Omega_0$.

Every hyperkähler structure can be obtained in this way using
$$\Omega_{\zeta} = (\omega_{J} + i\omega_{K}) + 2i\zeta\omega_{I} + \zeta^{2}(\omega_{J} - i\omega_{K}) = \Omega_{0} + 2i\zeta\omega_{I} + \zeta^{2}\bar{\Omega}_{0}.$$

Proof sketch. $X \times S^1 \subseteq M \times \mathbb{C}$ is totally real $(\mathbb{R}^n \subseteq \mathbb{C}^n)$. $X \times S^1 \to X \times S^1 : (x,\zeta) \mapsto (x,-\zeta)$ extends to holomorphic map $M \times \mathbb{C}^* \to \overline{M \times \mathbb{C}^*}$. Glue $M \times \mathbb{C}$ and $\overline{M \times \mathbb{C}}$ to a twistor space $Z \to \mathbb{CP}^1$.

For all $x \in X$, $\zeta \mapsto (x, \zeta)$ is a real twistor line.

Summary.

- (M, I_0, Ω_0) holomorphic symplectic
- $X \subseteq M$ complex Lagrangian.
- Suppose \exists deformation $(I_{\zeta}, \Omega_{\zeta})$ such that $\Omega_{\zeta}|_{X} = \zeta \omega$, ω Kähler.

Twistor theory: There are diffeomorphisms

$$\varphi_{\zeta}: M \xrightarrow{\operatorname{ev}_{0}^{-1}} \{\text{real twistor lines}\} \xrightarrow{\operatorname{ev}_{\zeta}} M, \qquad (\zeta \in \mathbb{C})$$

such that $\varphi_{\zeta}^*\Omega_{\zeta} = \Omega_0 + 2i\zeta\omega_{I_0} + \zeta^2\bar{\Omega}_0$ and $g = \omega_{I_0}(\cdot, I_0\cdot)$ is hyperkähler.

- (X, I) compact Kähler manifold
- Deformations of *I* are obtained by solving the Maurer–Cartan equation

$$ar{\partial}\phi+rac{1}{2}[\phi,\phi]=0, \qquad \phi(\zeta)=\sum_{n=1}^{\infty}\phi_n\zeta^n\in\Omega_X^{0,1}(\mathcal{T}^{1,0}), \quad (\zeta\in\mathbb{C} ext{ small}).$$

 $\mathcal{T}_{\zeta}^{0,1}:=(1+\phi(\zeta))(\mathcal{T}^{0,1})$ is the (0,1)-part of a new complex structure I_{ζ} .

- $[\phi_1] \in H^1(X, T^{1,0})$ determines the deformation up to diffeomorphisms.
- In general, some classes in $H^1(X, T^{1,0})$ can be obstructed. But:

Theorem (Hitchin 2012)

If π is a holomorphic Poisson structure on X and $\omega_1 \in \Omega_X^{1,1}$ is closed, then $[\pi\omega_1] \in H^1(X, T^{1,0})$ integrates to a deformation of complex structures I_{ζ} . Moreover, π is deformed to a holomorphic Poisson structure π_{ζ} on (X, I_{ζ}) .

Proof.
$$\Omega_X^{1,1} \stackrel{\pi}{\to} \Omega_X^{0,1}(T^{1,0}), \ \omega \mapsto \pi\omega = \pi^{ij}\omega_{jk}d\bar{z}^k \otimes \frac{\partial}{\partial z^i} =: \phi.$$

$$d\omega + \frac{1}{2}\partial i_{\pi}(\omega \wedge \omega) = 0 \qquad \Longrightarrow \qquad \bar{\partial}\phi + \frac{1}{2}[\phi,\phi] = 0.$$

For any closed $\omega_1 \in \Omega_X^{1,1}$ there exists $\omega_2, \omega_3, \omega_4, \ldots \in \Omega_X^{1,1}$ such that $\omega_\zeta \coloneqq \sum_{n=1}^\infty \zeta^n \omega_n$ converges to a family of solutions.

A holomorphic Poisson structure (I, π) is determined by its **Dirac structure**:

$$L_{I,\pi} := \{ v + \pi(\xi) + \xi : v \in T^{0,1}, \xi \in T^*_{1,0} \} \subseteq T_{\mathbb{C}}X \oplus T^*_{\mathbb{C}}X.$$

Encodes both I and π .

Gauge transformations. Given a Dirac structure L and a closed 2-form $\beta \in \Omega^2_V$,

$$e^{\beta}L := \{X + \xi + \beta(X) : (X, \xi) \in L\}$$

is a new Dirac structure.

Reinterpretation of Hitchin's theorem (Gualtieri 2018). For any closed $\omega_1 \in \Omega^{1,1}_{\mathcal{X}}$ there is a family of gauge transformations

$$\beta_{\zeta} = \zeta \omega_1 + \zeta^2 \beta_2 + \zeta^3 \beta_3 + \dots \in \Omega_X^{2,closed}, \quad (\zeta \in \mathbb{C} \text{ small})$$

such that $e^{\beta_{\zeta}}L_{I,\pi}=L_{I_{\zeta},\pi_{\zeta}}$ for new holomorphic Poisson structures (I_{ζ},π_{ζ}) .

If $\omega_{\zeta} \in \Omega_X^{1,1}$ are solutions to $d\omega_{\zeta} + \frac{1}{2}\partial i_{\pi}(\omega_{\zeta} \wedge \omega_{\zeta}) = 0$, then $\beta_{\zeta} = \omega_{\zeta} + \frac{1}{2}i_{\pi}(\omega_{\zeta} \wedge \omega_{\zeta})$.

- Take any Kähler form ω_1 on X and consider the **Hitchin deformation in**
 - the direction of ω_1 : $[\pi\omega_1] \in H^1(X, T^{1,0})$ tangent to a deformation $(X, I_{\zeta}, \pi_{\zeta})$, determined by gauge transformations $\beta_{\zeta} \in \Omega^2_{\mathbf{X}}$.

• $(M, \Omega_0) \to (X, \pi)$ symplectic realization, id : $X \hookrightarrow M$ complex Lagrangian

• Goal. Find a deformation $(M, I_{\zeta}, \Omega_{\zeta})$ such that $id^*\Omega_{\zeta} = \zeta \omega_1, \omega_1$ Kähler

 $\Omega_{\zeta_1,\zeta_2} := \Omega_0 + s^* \beta_{\zeta_1} - t^* \beta_{\zeta_2}$ is a holomorphic symplectic form for a unique complex structure I_{ζ_1,ζ_2} . **Remark.** $(M, \Omega_{\zeta_1,\zeta_2})$ is a dual pair between (X, π_{ζ_1}) and (X, π_{ζ_2})

• Lift the deformation from X to M: For small $\zeta_1, \zeta_2 \in \mathbb{C}$,

• $\mathrm{id}^*\Omega_{\zeta_1,\zeta_2} = \mathrm{id}^*\Omega_0 + \mathrm{id}^*s^*\beta_{\zeta_1} - \mathrm{id}^*t^*\beta_{\zeta_2} = \beta_{\zeta_1} - \beta_{\zeta_2}$

- $id^*\Omega_{\zeta,-\zeta} = \beta_{\zeta} \beta_{-\zeta} = 2(\zeta\omega_1 + \zeta^3\beta_3 + \zeta^5\beta_5 + \zeta^7\beta_7 + \cdots)$
- Conclusion. We need $\beta_3 = \beta_5 = \beta_7 = \beta_9 = \cdots = 0$.
- Can be done when $\dim_{\mathbb{C}} X = 2$ (starting with any ω_1).

(1)

(2)

Hitchin's unobstructedness theorem: There is a family $\omega_{\zeta} = \zeta \omega_1 + \zeta^2 \omega_2 + \zeta^3 \omega_3 + \cdots \in \Omega_X^{1,1}$ solving

together with a real-analytic Kähler form ω_1 .

defining new holomorphic Poisson structures $e^{eta_\zeta} L_{I,\pi} = L_{I_\zeta,\pi_\zeta}.$ Proposition

 $i_{\pi}(\omega_{2n} \wedge \omega_1) = 0$ and $\omega_{2n+1} = 0$ for all $n \geq 1$,

Then, $\beta_{\zeta} := \omega_{\zeta} + \frac{1}{2}i_{\pi}(\omega_{\zeta} \wedge \omega_{\zeta}) \in \Omega_{X}^{2,\text{closed}}$ are gauge transformations

If β_{ζ} has no odd degree term other than $\zeta\omega_{1}$, i.e.

then any symplectic realization $(M, \Omega_0) \to (X, \pi)$ has a hyperkähler structure (g, I, J, K) on a neighbourhood of X s.t. $\omega_I|_X = \omega_1$ and $\Omega_0 = \omega_J + i\omega_K$.

Example (Feix-Kaledin hyperkähler structures)

If $\pi=0$ then $\omega_{\zeta}:=\zeta\omega_1$ is a solution to (1) and (2). So T^*X has a

hyperkähler structure on a neighbourhood of its zero section.

- (X, I, π) compact holomorphic Poisson manifold
- ω_1 real-analytic Kähler form
- $\Delta = \bar{\partial}^* \bar{\partial} + \bar{\partial} \bar{\partial}^*$ Laplacian of ω_1 ; G Green operator of Δ

Solutions $\omega_{\zeta} = \sum_{n=1}^{\infty} \zeta^{n} \omega_{n}$ to

$$d\omega_{\zeta} + rac{1}{2}\partial i_{\pi}(\omega_{\zeta}\wedge\omega_{\zeta}) = 0$$

can be obtained by defining $\omega_2, \omega_3, \omega_4, \dots$ recursively by

$$\omega_n = \frac{1}{2}\partial\bar{\partial}^* G \sum_{i+j=n} i_{\pi}(\omega_i \wedge \omega_j).$$

We need $i_{\pi}(\omega_{2n} \wedge \omega_1) = 0$ and $\omega_{2n+1} = 0$ for all $n \geq 1$. If $\dim_{\mathbb{C}} X = 2$, then the Kähler identities give

$$\omega_n \wedge \omega_1 = L(\omega_n) = \frac{1}{2} \partial \bar{\partial}^* LG \sum_{i+j=n} i_{\pi} (\omega_i \wedge \omega_j) = 0,$$

since $G \sum_{i+j=n} i_{\pi}(\omega_i \wedge \omega_j) \in \Omega_X^{0,2}$ and $L(\Omega_X^{0,2}) \subseteq \Omega_X^{1,3} = 0$. Then, by induction, $\omega_{2n+1} = 0$ for all $n \ge 1$.

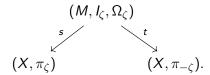
Theorem (M.)

Let (X, π) be a compact holomorphic Poisson surface endowed with a real-analytic Kähler form ω .

Let $(M,\Omega) \to (X,\pi)$ be a holomorphic symplectic realization with Lagrangian section $id: X \hookrightarrow M$.

Then, there is a hyperkähler structure (g, I, J, K) on a neighbourhood of X in M such that $\mathrm{id}^*\omega_I = \omega$ and $\Omega = \omega_J + i\omega_K$.

For each $\zeta \in \mathbb{C}$, the holomorphic symplectic structure $(M, I_{\zeta}, \Omega_{\zeta})$ is a dual pair between the Hitchin deformations π_{ζ} and $\pi_{-\zeta}$ in the direction of ω :



thank you