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Lecture 2

Clifford algebras and spin groups

2.1 Clifford algebras

2.1.1 Basic definitions and properties

Definition 2.1.1. Let (V,(-,-)) be a Euclidean vector space. The Clifford algebra of V is
defined as
CIV) :=T(V)/I(V),

where T(V) := @,5o V" is the tensor algebra of V and I(V) is the two-sided ideal generated
by {v@v+|[v]|?:veV}.

Cl(V) is a unital associative real algebra whose product we will denote by ab or a - b.
Remark 2.1.2. I(V) is also generated by {v ® w +w ® v + 2(v,w) : v,w € V}}.

Choosing an orthonormal basis (e;); for V' we can describe CI(V') as the algebra generated

_{—4, i=j,
eiej =

by {e;}; subject to the relations

—eje;, 1 .
In particular, dim C1(V) = 2dimV,
Lemma 2.1.3. The map V — ClV) given by the composition V — T (V') — Cl(V) is injective.

Proof. Tt is enough to prove that I(V)NV =0. Let

a= Zbi ® (v @ v; + ||UZ||2) ®c e I(V),

where the sum is finite and b;, ¢; € C1(V') are homogeneous. If a € V', then necessarily

ij®vj®vj®cj:0,
J

where j ranges along the indices such that [bj| + |c;| is maximal. Then it also follows that
2
> billvsl* @ ¢; = 0.
J
We now proceed by induction to conclude that a = 0. O
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2 LECTURE 2. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proposition 2.1.4. CI(V) is, up to isomorphism, the unique unital associative real algebra with
an inclusion V- — Cl(V') satisfying the following universal property: any linear map f:V — A
to a unital associative real algebra A such that f(v)? + ||v]|?> = 0 extends uniquely to an algebra
morphism Cl(V) — A.

Corollary 2.1.5. Anisometry (V,(-,-)) — (W, (-,-)) induces a unique algebra morphism CI(V') —
Cl(W). In particular, O(V) C Aut(CL(V)).
Cl(V) is actually a Zg-graded algebra, or super algebra.

Definition 2.1.6. We denote by € the algebra automorphism of C1(V') induced by the antipodal
map V — V sending v € V to —w.

Lemma 2.1.7. We have that €2 = 1, so € induces a Za-grading C1(V)) = C1I°(V) @ C1Y(V) with
respect to which C1(V') becomes a graded algebra.

Definition 2.1.8. We call C1°(V) the even part of Cl(V') and C1'(V) the odd part.
Example 2.1.9. Let Cl(n) be the Clifford algebra of n-dimensional Euclidean space. Then
1. CI(1) = R[z]/(z? +1) = C.

2. CI(2) is generated by x and y subject to 22 = y?> = —1 and xy = —yx, i.e., C1(2) = H. On
the other hand, C1°(2) = R[xy]/((2y)? — 1) = C.

3. CI(3) = Ha H (exercise).
CL(V) also comes equipped with a transposition operator.

Definition 2.1.10. We define the transposition map ¢ : C1(V) — CI(V) as the induced map
on CI(V) by the transposition map on T'(V') given by

V@ ®Up — V0 ® - @ .

The transposition map satisfies the properties that one would expect: (a')! = a and (ab)! =
blat.

We now want to take a closer look at the relationship between C1(V') and AV. Observe that
dim CI(V') = dim AV, so that, abstractly, we have that C1(V') =2 AV noncanonically as ungraded
vector spaces. We will see now that there is actually a canonical isomorphism of graded vector
spaces CI(V) = AV.

Definition 2.1.11. A representation or Clifford module of CI(V) is a real vector space S
together with an algebra morphism v : CI(V)) — End(S), called the Clifford action, which we
will often write as 7,1 or a -, for a € CI(V) and ¢ € S.

Example 2.1.12. 1. Cl(V) is a Clifford module via left multiplication.

2. If S is a Clifford module with Clifford action 7, then S* is also a Clifford module with
Clifford action v* given by (7*)q := (74t)*.
Lemma 2.1.13. The map V — End(AV) sending v € V to ¥ — v A — i1, where
iy(vp A Avg) 1= Z(—l)iH(v, VUL A s AV A - A\ Vg
i

induces a representation of CL(V)) on AV.



2.1. CLIFFORD ALGEBRAS 3

Proof. For v eV and ¢ € AV,
v (UW :U'(UAw_iv¢) = _iv(v/\d}) _U/\ivl/}: —”U||21/1- O

Definition 2.1.14. We define the symbol map o : CI(V) — AV by o(a) := a- 1, where a acts
on 1 € R = A’V by the representation from Lemma 2.1.13.

In low degrees, o looks like:

(1
(v

)
)

o(vive) = v1 Avg — (v1,v2),
)

o 1,
o v,

o(vivov3) = v1 A vz A vz — (v1,v2)v3 + (v1,v3)v2 — (v2,v3)v1
Proposition 2.1.15. The symbol map is an isomorphism of graded vector spaces.

Proof. 1f (e;); is an orthonormal basis for V, then
o(ei, ...e) =ei, N+ Nei, for i1 < -+ < iy,
so that o sends a basis for C1(V') to a basis for AV. O

Remark 2.1.16. The inverse of the symbol map ¢ : AV — CI(V) is sometimes called the quan-
tization map.

Lastly, we will need at some point how Clifford algebras behave under direct sums.

Proposition 2.1.17. If V. = W; & Wy is an orthogonal decomposition, then C1(V) = Cl(W7) ®
Cl(W2) as graded algebras.

Proof. Consider the linear map f : V — Cl(W;) @ C1(W3) given by f(w1+ws) := w1 @1+ 1Q@ws.
Then

fwy 4 w2) f(wy +ws) = (w1 @1+ 1@ ws)?
=wi®1l+w @wy—w @ws + 1 wj

= —[lwy +wo*.

It lifts, then, to a linear map Cl(V)) — ClL(W;) ® Cl(W3). One can see that this map is surjec-
tive by taking an orthonormal basis of V' adapted to the decomposition W; @& Ws. Since the
dimensions agree, it must be an isomorphism. O

2.1.2 Chirality

Definition 2.1.18. Let vol € detV be a volume element normalized such that |[vol||? = 1.

Then we define the corresponding chirality element I' := ¢(vol) € CI(V).

Lemma 2.1.19. I'? = (—=1)""*1/2 gnd Tv = (=1)" T, where n = dimV. In particular, T
is in the center of CI(V') if n is odd.
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Proof. Let (e;); be an orthonormal basis for V. Then I' =e; ... ey, so

I2=¢;...epn61...6p = (—1)"_1+”_2+“'+1e% et = (_1)7"0(”4-1)/2'

.e
On the other hand, if v # 0, then let e; = v/||v||, and hence
ol = ||[v]lerer ... en = (—=1)" YHv|ler ... ener = (1) Tw. O

Recall that given a volume element vol € detV we can define its Hodge star operator
x : APV — ARV where n = dimV, by sw := i,vol, where we use the metric to identify
w with an element in A¥V*. Alternatively, *w is the unique element in A"V such that
u A *w = (u,w)vol for all u € AFV.

Proposition 2.1.20. Let vol € detV be a normalized volume element. Then its chirality
element and its Hodge star are related by o(al') = xo(e(at)).

Proof. First of all, notice that if a,b € CI(V), then o(ab) = ab-1 =a-(b-1) = a- o(b).
Applying this to b = I" we get that o(al') = a - vol. Let (e;); be an orthonormal basis such that
vol=e; A--- Aey. Then
€iy -..€ -vol = —e; ... €, -ieik(el A Aep)
=€jy .- Cjp_y ieikflieik (61 FANCIRIVAN Bn)
== (=DPie, e

= (1)« (s, N---Nejp).O

i

kVOl = (_1)ki6ik/\"'/\€il vol

When working with the complexification V¢ := V ®rC we can further normalize our chirality
elements. We consider V¢ endowed with the extension of (-,-) to V¢ by C-bilinearity.

Definition 2.1.21. We define CI(V) := Cl(Vg). If dimV = 2n and T" € CI(V) is a chirality
element, we define the complex chirality element I'. := i"T' € CI(V).

Remark 2.1.22. CI(V)) 2 Cl(V) ®@gr C canonically.

Proposition 2.1.23. Let dimV = 2n. Then the complex chirality element satisfies T? =1, so
it induces a decomposition C1(V') = Cly (V) & Cl_(V'). Moreover, if n = 2, then the symbol map
induces an isomorphism

ClL(V)=C(1+T,) @ A2,
Proof. First, by Lemma 2.1.19, T? = i2"T2 = (—1)"(—1)"?"+1) = 1. By Proposition 2.1.20 we
have that a € C1%.(V) if and only if
+o(a) =i"o(al') =i" x o(a') = i" * o (a)".
Hence, the symbol map identifies C19 (V) with the space
{w € ATV 1 i x w' = +w}.

If n = 2, then such a w € A®V*™V in this space can be decomposed as w = wg + wy + wy, for

wj € NV, and

t

"k wt = —xwg + *wo — *wy = Fwy = we + wy.

Hence, *wg = Fwy, *we = w9 and xwy = Fuwy. L]



2.2. SPIN AND SPIN® GROUPS )

2.2 Spin and spin® groups
2.2.1 Spin groups
Definition 2.2.1. We define the group of units of C1(V') as the group of invertible elements
CI¥(V) := {a € CI(V) : there is a~! € C(V) with aa™! = a"ta = 1}.
We define the adjoint action as the map Ad : CI* (V) — Aut(Cl(V)) given by
Ady b := e(a)ba™.

Remark 2.2.2. CI1(V') has a unique smooth structure (the vector space smooth structure) making
the multiplication. C1* (V') is an open subspace thereof, so that C1* (V') becomes a Lie group.
With this structure, Ad : C1* (V) — Aut(Cl(V)) is a Lie group map.

The adjoint action by vectors in V' has a familiar form.

Proposition 2.2.3. Letv € V be nonzero. Then Ad, V =V and Ad, acts on V as the reflection
along the hyperplane v, that is:

Ade:w—2<|1|)’ﬁl;>v, forweV.
v
Proof. Since v is nonzero, v—! = —v/||v[|?. Then
—1 <an>
Ad, w = —vwo :w—2” sz. O
v

Definition 2.2.4. We define the Clifford group of V as
T(V):={aeCl*(V): Ad,V =V}

Remark 2.2.5. T(V) is a closed subgroup of C1*(V), so that it becomes an embedded Lie sub-
group of CI* (V) by Cartan’s closed subgroup theorem.

Proposition 2.2.6. The kernel of Ad: T'(V) — GL(V) is R*.

Proof. Let a € T'(V) with Ad, = 1 and write a = ag + a1, with ag even and a; odd. The fact
that Ad, = 1 means that vay + va; = agv — ayv for all v € V. Let (e;); be an orthonormal
basis for V. Then ag and a; are polynomials on (e;);, which we can write as ag = e1b1 + ¢
and a1 = e1bg + ¢1, for by and ¢; odd polynomials on (e;);~1 and by and ¢y even polynomials on
(67;)2'>1. Then

2 2
e1a = ejag + eja; = ejby +ejco+ejbg+ejc; = —by —bg+eico+ ey
2 2

= ape1 — are; = erbre + cper — erbger — crer = —eiby + e1co — efby + e1cy

= by + by + e1cy + e1cq,

which implies that by = by = 0. Hence, a = ¢y + ¢; is a polynomial on (e;);~1. By induction, we
see that actually a € R, and since a € C1*(V), then a € R*. O]

Definition 2.2.7. We define the norm map N : CI(V) — CI(V) by N(a) := €(a')a.
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Proposition 2.2.8. The restriction of the norm to I'(V) gives a Lie group morphism
N:T(V) = R*.
Proof. Let a € T'(V). Then for all v € V' we have that
Ad,v = e(a)va! = (Ad, v)! = e(a™)val,

so e(at)av(e(a')a)™! = v, i.e., N(a) lies in the kernel of Ad. The same expression gives that
Ad,: = Ad, 1, so that a' € T'(V), and therefore N(a) € I'(V), and by Proposition 2.2.6 we now
conclude that N(a) € R*. On the other hand, if a,b € T'(V'), then

N(ab) = e(bta’)ab = e(b")N(a)b = N(a)N(b). O
Corollary 2.2.9. The restriction of Ad to I'(V) lands in O(V), i.e., Ad: I'(V) = O(V).

Proof. Let a € I'(V). First note that N(e(a)) = N(a) and that v € I'(V) for every nonzero
v e V. Then

| Adg v||? = N(Adgv) = N(e(a)va™) = N(a)N(v)N(a™1) = N(v) = ||v|>. O
Definition 2.2.10. We define the pin and spin groups, respectively, of V as
Pin(V):={aeI'(V): N(a) =1},
Spin(V) := Pin(V) N C1°(V).

Remark 2.2.11. Since Pin(V') is the kernel of a Lie group map, it is itself an embedded Lie
subgroup of T'(V). Since C1°(V) is a closed subspace of CI(V), then Spin(V) is an embedded
Lie subgroup of Pin(V').

Theorem 2.2.12. There is a short exact sequence
1— R —T(V) 24 0(V) — 1,
which restricts to
1 — Zy — Pin(V) 2% O(V) — 1,
1 —s Zy — Spin(V) 2% S0(V) — 1.
In particular, Spin(V) is the universal cover of SO(V') if dimV > 3.

Proof. Recall the Cartan—Dieudonné theorem: every element of O(V') can be written as a com-
position of at most dim V reflections. Together with Proposition 2.2.3, this gives surjectivity of
Ad. That the kernel of Ad restricted to I'(V') is R* is exactly the content of Proposition 2.2.6.
Moreover, if a € Pin(V) is in the kernel of Ad, then a € R*, and since N(a) = a? = 1, then
a==1.

Finally, the long exact sequence on homotopy groups gives that the index of 7;Spin(V') in
m130(V) is 2. Since m1SO(V') = Zg if dim V' > 3, then m;Spin(V) = 1 in this case. O

Corollary 2.2.13. We have that

(V)= {v1...v, € C*(V) :v; € V, ||s]|* # 0,7 > 0},
Pin(V) = {vy...v, € CI(V) : v; € V, |Jv||> = 1,7 > 0}.
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Proof. Clearly vy ...v, € T(V) if ||v;]|?> # 0. To prove the converse, let a € I'(V). Then Ad, is

a composition of at most dim V' reflections, say along the nonzero vectors v1,...,v, € V. Then
Ad, = Ady, ., so by Theorem 2.2.12 we have that a = Av; ... v,, for some A € R*. A similar
argument gives the result for Pin(V') as well. O

Corollary 2.2.14. The dimension of Spin(V) as a Lie group is 1 dim V(dimV — 1), and its
Lie algebra is
so(V) ={Acgl(V):(A,)+(,A4) =0}
2.2.2 Spin® groups
The same proofs as in Theorem 2.2.12 and Proposition 2.2.8 give the short exact sequence
1— C* — D(Ve) 2% 0(Ve) — 1. (2.1)
and that N : I'(Vg) — C* is a Lie group morphism.

Definition 2.2.15. We define the adjoint map * : CI(V) — CL(V) by a* := a’. We also define
the norm® map N¢: Cl(V) — Cl(V) as N¢(a) := €(a*)a.

The adjoint map satisfies, as expected, (a*)* = a, (ab)* = b*a* and (\a)* = Aa* for A € C.
Notice as well that N¢: T'(Vg) — I'(Vp) is a Lie group map, which we do not know to necessarily
land in C*.

Lemma 2.2.16. An element a € T'(V) satisfies Adyv = Ad,© for all v € Vi if and only if
N¢(a) € R,

Proof. Ad,v = Ad, v if and only if (Ad,v)* = Ad, v*, which is equivalent to e(a*)a € C* by
(2.1). In such case, we have that

so that actually N¢(a) € R*. O
Definition 2.2.17. We define the Clifford®, pin® and spin® groups as
r°(V):={aelT'(Vg): N°a) € R*},
N¢(

Pin®(V) :={a eT(V): a) =1},
Spin®(V) := Pin®(V) N CI°(V).

Remark 2.2.18. Since R* is a closed Lie subgroup of I'(V¢), then I'“(V') is also a closed Lie
subgroup of I'(Vg). Then N¢ : I'“(V) — R* is a Lie group map, so that Pin“(V') becomes a
closed Lie subgroup of I'“(V'), and hence Spin®(V') a closed Lie subgroup of Pin¢(V).

Theorem 2.2.19. There is a short exact sequence
1—C* —TV) 2 o) — 1,
which restricts to

1— U(1) — Pin“(V) 2% 0(V) — 1,
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1 — U(1) — Spin®(V) 2% SO(V) — 1.

Moreover, there is also a short exact sequence

1— Zy — (V) 22N o(V) x € — 1,

which restricts to

1 — Zy — Pin°(V) 2V 0(V) x U(1) — 1,

1 — Zy — Spin(V) 5V 30(V) x U(1) — 1.
Proof. The first three are clear. The second one follows from the fact that if (Ad,, N(a)) = (1,1),

then a € C* and a®> = 1, so a = +1. For the last two, notice that if a € Pin(V), then
N¢(a) = ¢(a*)a = e(a')a = 1, so that N(a) = e(a’)a = a 'a € C*, and

N(a)N(a) =a taa 'a =1,
so N(a) € U(1). O

Corollary 2.2.20. We have that

rev)

{v1...0, € CI*(V) 1 v; € Vg, (v3,v;) # 0,7 > 0},
Pin“(V) ={

v1... v, € CI(V) tv; € Vi, (v, 03) € U(1),r > 0}.

Moreover, the group morphisms

(V) x C* — TYV),
Pin(V) x U(1) — Pin“(V)
Spin(V') x U(1) — Spin®(V)

given by (a, z) — az induce group isomorphisms

(V) =I(V) xgx C*,
Pin®(V) 2 Pin(V) xz, U(1),
Spin®(V') = Spin(V') xz, U(1).

Proof. The claims for I'(V') and Pin®(V') are clear by Theorem 2.2.19.

If a € T(V) and z € C* are such that az = 1, then a|z|? = Z, and since a is real, we get
that z € C* NR = R*. On the other hand, if a € I'(V'), then there are vectors v; € V with
lvg||? # 0 such that Ad, = Ad,,..,,. Theorem 2.2.19 now implies that there is z € C* such that
a = zvp ...vy. Similar reasonings apply to Pin(V') and Spin®(V). O
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2.3 Spin representations
Let dim V' = 2n. We will be concerned with complex, and even unitary, spin representations.

Definition 2.3.1. A Clifford module S with action v : CI(V)) — End(S) is unitary if S carries
a Hermitian metric such that v.q«) = ;-

Equivalently, a representation of Cl(V') is unitary if and only if every real vector v € V C V¢

acts as a skew-self-adjoint operator.

Definition 2.3.2. We define the trace on CI(V') as the linear map tr : CI(V) — C given by
tr(a) := o(a)g, where ¢ denotes de degree 0 part.

Lemma 2.3.3. The trace satisfies the following properties:

tr(ab) = tr(ba), tr(a*) = tr(a), tr(1) = 1.

Example 2.3.4. 1. Let h be the Hermitian metric on V¢ induced by (-, -), given by h(v, w) :=
(U, w), which in turn induces a Hermitian metric on AVg. Then the representation C1(V') —
End(AVg) is unitary.

2. CI(V) itself carries a Hermitian metric, given by h(a,b) := tr(e(a*)b). Then the action
of CI(V) on itself by left multiplication becomes a unitary action. Moreover, with this
Hermitian metric the symbol map o : CI(V') — AV becomes an isometry:

lo(a)|2 = h(a-1,a-1) = h(L,e(a*)a- 1) = tr(e(a*)a).

Lemma 2.3.5. (V, (,-)) admits Lagrangian subspaces. If L is a Lagrangian subspace, then it
always admits a Lagrangian complement L' = L* inducing an isometry Vo = L & L*, where the
pairing on L ® L* is given by

(04 &wtm) = J(Ew) +n),  forvtEutnele L

Proof. Let (ej); be an orthonormal basis for V' and let L := spanc{e; + iep4;}7—;. Then
dimg L =n= %dim@ Ve and L is isotropic:

(ej +ientj,er +ienik) = O — 0jp = 0.

Let L be now any Lagrangian and let W be any complement to it. Then from Vo =L & W
and LNW =0 we get that 0=LNWL and L ® W+ = V. Let P: W — L be the projection
of W to L according to the decomposition Vo = L@ W+, Let L' := {w — %Pw :w € W}. Since
L' is the graph of a linear map W — L, it is also a complement for L. Moreover, it is isotropic:

1 1 1
(w— §Pw,w — §Pw> = (w,w — Pw) + Z(Pw, Pw) =0,

since w — Pw € W+ and Pw € L. Hence, L' is a Lagrangian complement to L. Finally,
L' = (L)t = (L)° =L~ O]
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Proposition 2.3.6. Let L C V¢ be a Lagrangian and identify Vo = L & L*. When endowed
with the inherited Hermitian metric from Vg, the space AL* is a unitary Clifford module with
Clifford action

(V+&) - :=ENY —ipt, forv+&€ L@®L* andp € ANL*,
whose dual Clifford module is AL with Clifford action

(V4§ w:i=vAw —igw, forv+&€e L L* and w € AL.
Proof. 1t is indeed a Clifford module: if v+ & € L & L* and ¢ € AL*, then

0+ =+ ENY— i) = —iu(ENY) —ENiv = —(v+E v+ EY.

~Y

To see that it is unitary, first notice that, via the identification L* = L, conjugation in
L& L* can be written as v+ & = £+ 7, with € € L and 7 € L*. Let ) = o' A--- AaF and
@ =N ABEFL for of, B € L*. Then

h((v+8&) -, 0) =h(EAar Ao AaP BEA-- A BETY)

hEBY) .o h(E BT
h(at,8Y) ... h(at, BFF)
= det : :
Mok 8Y) ... h(ak, )
hal,8Y) ... h(al,B) ... hial,pFH)
=D _(=1)""'h(¢, B7) det :
h(a®,BY) ... h(ak, B) ... h(ak,gEY)

= S (DR AW, B A ABA A B

That AL is a Clifford module is clear. It only remains to see that it is the Clifford dual
to AL*. Consider the duality pairing (-,-) : AL* x AL — C given by (¢, w) := i, then an
analogous computation to the previous one proves that

Since this duality pairing is non-degenerate, it establishes that the Clifford dual of AL* is indeed
AL. O

Definition 2.3.7. The CI(V)-module Sy := AL*, for a Lagrangian L C V¢, we call the spinor
module.

Theorem 2.3.8. The spinor module Sy, is irreducible and the Clifford action
Cl(V) — End(SL)
s an isomorphism of graded algebras. It restricts to an isomorphism
C1I%(V) — End(S?) @ End(S}),

so that both SY and St are irreducible unitary C1°(V')-modules, which are moreover non-isomorphic.
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Proof. Note that the dimensions of CI(L @ L*) and End(AL*) agree, so to prove that CI(V) —
End(Sy) is an isomorphism it suffices to check that End(AL*) is generated by operators of the
kind ¢ A and i,, for £ € L* and v € L.

If dimL = 1, let v € L be a generator for L and let £ € L* be such that £(v) = 1. Then
AL* = R @ R and we can write the operators in matrix form

0 0 (o1 . 10
gA:<1 0)’ z”:<0 0)’ z”C’@A):(o 0)'

Together with the identity matrix, these span End(AL*). For the general case, let (v;); be a
basis for L with dual basis (¢%);, and let L; := Ru;, so that L} = R¢%. Then L L* = @, L; ® L}
as quadratic vector spaces, so that, by the 1-dimensional case,

CL & L*) = QR CUL; & L}) = Q) End(AL}) = End (@ AL;‘> = End(AL¥).

We conclude that indeed C1(V) — End(Sy) is an isomorphism of algebras, which in particular
implies that the representation is irreducible.
Restricting to the even parts, it induces an isomorphism

C1°(V) — End(S?) @ End(S}),

giving that both S% and Si are irreducible C1°(V')-modules. To see that these are non-isomorphic,
taking (v;); and (£%); dual bases for L and L*, then consider the chirality element

I .= (Ul - 51)(111 + 51) ce ('Un - fn)(vn + gn)
= (1+2v1&Y) ... (14 20,8")

in CI(L @ L*). Since, for any multiindex I,

, L ¢, jel
L+ 20;87) - &8 = ¢ = 2i, wff):{ .
( / ) ]( _617 J ¢ I7
we see that I - ¢/ = (—1)"(—1)‘5I|£l. Hence, T acts as (—1)" on S? and as —(—1)" on S, so
they cannot be isomorphic. O

Theorem 2.3.9. 1. There is a unique isomorphism class of ungraded irreducible CI(V)-
modules, represented by Sy,.

2. There are two isomorphism classes of irreducible C1°(V)-modules, represented by S% and
st

3. There are two isomorphism classes of graded irreducible C1(V')-modules, represented by Sy,

and Sr[1].

Proof. By Theorem 2.3.8, Cl(V) is isomorphic, as an ordinary algebra, to a complex matrix
algebra, and these are known to have a unique irreducible representation. On the other hand,
CI°(V) is isomorphic, as an ordinary algebra, to a direct sum of two complex matrix algebras,
and again these are known to have two isomorphism classes of irreducible representations.
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As for the graded case, it all boils down to checking how many different Zs-gradings does an
ungraded spinor module S admit. We will see that any grading is given as the decomposition
into eigenspaces for ., where I'; is the complex chirality element and « : C1(V') — End(S) is
the Clifford action. Indeed, since I'.v = —vI,. for any v € V¢, then 7, interchanges S° and S?,
so this Zg-grading is compatible with the action. Conversely, if S = S° @ S! is a compatible Zo-
grading, since v, exchanges S° and S, for any v # 0, then both have dimension %dim S. This
implies that the restriction of the action C1°(V) — End(S%)@&End(S?!) is also an isomorphism, so
that both S° and S! are irreducible C1°(V')-modules. Since I, lies in the center of C1°(V), then
by Schur’s lemma ~p, must act as a scalar on both S and S!, so these are its eigenspaces. [

Definition 2.3.10. The (half-)spin representations are the representations of Spin(V') in-
duced by the two irreducible CI1°(V')-modules, which we call S*. The induced representations
of Spin®(V') are the (half-)spin® representations.

If V = R?", then the spin and spin® representations are typically denoted by A;tn.

Proposition 2.3.11. The spin and spin® representations ST are irreducible and non-isomorphic.

Proof. This follows immediately from Theorem 2.3.8 and from the fact that both Spin(V') and
Spin¢(V) generate C1°(V) as a complex algebra. O
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Lecture 4

Dirac operators and the
Seiberg—Witten equations

foThroughout this lecture, (M, g) will be an orientable riemannian manifold, whose Levi-Civita
connection we denote by V9. C°°(M) will always refer to complex-valued smooth maps on M,

whereas C*°(M, R) will denote real-valued ones.

4.1 Dirac operators and spinor bundles

4.1.1 Dirac operators

Definition 4.1.1. A real (resp. complex) Dirac bundle over M is a pair (5, ~), where S — M
is a Euclidean (resp. Hermitian) vector bundle and v : C1(M, g) — End(S) (resp. 7 : CI(M, g) —
End(S)) is a morphism of algebra bundles such that yeqe) = 75 (resp. Ye+) = 7a). If S is Zo-
graded such that v is a morphism of graded algebra bundles, then we say that the Dirac bundle
is graded. The action of v we write as v,¢ or a - ¢, for a € C1(M, g) and ¢ € S.

We would like to do differential geometry with these objects, so we would like to introduce
connections which are well suited for Dirac bundles.

Lemma 4.1.2. There is a unique connection V9 on Cl(M, g) extending the Levi-Civita connec-
tion on M such that
VY (ab) = (V%a)b+ aVb.

Proof. V9 induces a connection on the tensor algebra bundle T'(M,g) compatible with the
algebra structure. To see that it induces one on Cl(M, g) it is enough to check that the ideal
bundle I(M,g) is parallel. If X, Y € X(M), then

VY @Y + Y2 =V4Y @Y +Y @ VLY + 2(VLY,Y) e T(I(M,qg)). O

Definition 4.1.3. Let (S,v) be a Dirac bundle. A Dirac connection on S is a metric con-
nection V on S such that
Vx(a-v¢)=V%a-¢+a-Vxi.

A triple (S,+,V) where V is a Dirac connection for the Dirac bundle (S,~) we call a Dirac
bundle with connection.

15
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Viewing 7 as a section of Cl(M, g)* ® End(S), the Dirac connection condition is equivalent
to the condition Vy = 0, where V is the induced connection on Cl(M, g)* ® End(S).

Lemma 4.1.4. If (S,v) is a graded Dirac bundle and V is a Dirac connection on S, then V

preserves the grading.

Proof. The grading decomposition on S is always given as the eigenbundles of a chirality element
in Cl(M, g), and chirality elements are always parallel, since Riemannian volume forms are Levi-
Civita parallel. O

Example 4.1.5. 1. CI(M,g) is a real Dirac bundle with connection when endowed with the
Levi-Civita connection and the metric (a,b) := tr(a'b). Similarly, Cl(M,g) is a complex
Dirac bundle with the Hermitian metric h(a,b) := tr(a*b).

2. Q(M) is a real Dirac bundle with connection when endowed with the Levi-Civita con-
nection and the metric inherited from T'M. Of course, Q(M,C) is also a complex Dirac
bundle.

Definition 4.1.6. Let (S,~, V) be a Dirac bundle with connection. We define its Dirac oper-
ator ) : T'(S) — I'(S) as the composition

I'(S) L T(T*M ® S) - T(S).

We can express it locally as

Dy => E;- Vg,
i
for any local orthonormal frame (E;);.

Example 4.1.7. Let o € QF(M), then the Dirac operator on « can be computed as

Da=> (EiAVga—ipVgae) = (d+d)a.

(2

Observe that for a graded Dirac bundle S = S* @ S~ the Dirac operator breaks into two
pieces Iy : T(S*) — I'(ST).

For the proof of the following proposition, recall that the divergence of a vector field X €
X(M) is defined as

div? X := tr(VIX) = > (V}, X, E;) € C®°(M,R).

(2
It also satisfies £ xvoly = (div? X)volY:
Lxvold = Lx(E'A--- ANE™) = =Y (X, Ej], E;)vol?
i

=Y (V4. X — V& E;, Ej)vol? = (div? X)vol?.

Lastly, by Stokes’s theorem, if w € Q"(M), then

/wa:/ din:/ inZO.
M M oM
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Proposition 4.1.8. On a compact manifold, the Dirac operator is formally self-adjoint.

Proof. Let ¢, € I(S). Then
(Dioh2 = [ (Do, ool = > [ (B D, pvote
— —Z/ (Vi,0b, Ei - p)vol?
— (0, Dig)s — (/ L (16, F, - )vold — / (6, V% B - <p>volg) .
The result now follows from the following computation:
) || £r 0. B ppvote = ) ([ 2ol B o)~ [ (B p)tsvolt)
__ Z /M<¢, Ei - 0)(div? E;)vol?
==X ], B o}V, B By vol
=3 B B T ol
= %:/Mw,v‘,{;jEj - p)vold.[]

Let us now study the symbol of 1.

Definition 4.1.9. Let (E,V) — M be a vector bundle with connection. Then the operator
V*: QY M, E) — T'(E) is defined as

Via := —tr!(Va), for o € QY(M, E),
where tr? : T*"M @ T*M ® E — FE is the trace in the first two components.

Explicitly, we can write it as
— Y Via(B) = - Y (Ve ((B)) - (V4 E)).
i i
If E is equipped with a metric with which V is compatible, then V* is actually the formal adjoint
of V:T'(E) = QYM, E).

Proposition 4.1.10. Let (S,v, V) be a Dirac bundle with connection. Then, if ¢ € T*M, ¢ € S
and a € T"M ® S,

o1 (D) (€)Y = —i& - ¥,
o1 (V)(§)Y = —iE @,
o1(V)(€a = ia(§).

In particular, 02(122)(5) = 02(V*V) (&) = ||€]12.
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Proof. Let £ = df for f € C*°(M,R). Then

io1(P) (€)= D(f) — [ =~(df @ ¢ + V) — fr(V) = € -2,

io1(V)(E)Y =V(fy) — [V =df @ =@,

io01(V)(§a =V (fa)— fV'a=—-tr/(df @ a+ fVa) + ftr9(Va)
= —a(df) = —a().

In particular:
o2 (D) (€)= o1 (D) (€) (o1 (D) (E)y) = —€2 -4 = [|¢|%w,
02(V*V) (€)% = 01(V*)(€) (01 (V)()¥) = (£ ® ¥)(€) = ||¢][*.00

Hence, the difference &£ := 12)2 — V*V is a first order differential operator. It is a key fact
that it is actually zeroth order, that is, a tensor.

Theorem 4.1.11 (Bochner formula). Let (S,v,V) be Dirac bundle with connection. Then
P =V'V+ R,
where R € End(S) is given by
1
R = 5 > E;- E;-RY(E;, E))v.
i?j

Proof. First of all, note that V*V1) = — tr9(V?1)), where
Viy¥ = VxVyt— Vg v
Notice as well that (Vg(’y — V%/,X)w = RY(X,Y)y. We can now compute:
D= Ei Vi (E -Vgi) =Y (Ez V4, Ej -V +E;i - Ej- VEiijw)
,J 2
=2 BB Vg +) (E Vi Ej Ve + B Ej- Vv%iEjl/’)
7j Z7]
1
=— Z V.Y + 3 ZEZ - Ej - (VQEZ-,EJ- - V%E]-,Ei)¢
i i#]
+ (Ez VB Ve + B By vaE,E,-¢)
i, '
. 1
= V*Vi) + §ZEZ» -E; - RY(E;, E;)¢
i,J
+ Z (EZ . V%iEj . VEjlﬁ +E; - Ej- VVQE,ij) .
i, ’

The last sum, call it A, is actually zero:

A=) (Ez Vi Ej -+ Ei- Ej- va;;zEj@!))

ij
= ((VgEiEj,Ek>Ei By - Vi + (V9 Ej, By E; - E; - vEm)
0,7,k
= (V% Ex, Ej) + (V¥ Ej, E)E; - Ej - Vg, = 0.0
1,5,k

We would like to particularize now Bochner’s formula the special case of spinor bundles.
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4.1.2 Spinor bundles

Definition 4.1.12. A complex spinor bundle is a complex graded Dirac bundle (S,) such
that the Clifford action « : CI(M, g) — End(S) is an isomorphism of algebra bundles. A Dirac
connection for a spinor bundle will be called a spinorial connection. If S is a spinor bundle,
we denote by o/(S) the space of spinorial connections on S.

Spinor bundles here will always be complex, so we will drop the adjective complex.
Lemma 4.1.13. If S is a spinor bundle, then o (S) is an affine space modeled on i (M).

Proof. Let V! = V + B, with V',V € &(S) and B € Q'(M,End(S)). Then for all X € X(M)
and a € T'(CI(M, g)), since both V and V' are compatible with ~:

VxY = Wha = V,X'Ya = VxYa + [Bx;7al,

so Bx lies in the center of End(S) at each point, which means that actually B € Q!(M,C).
Moreover, since both V' and V are compatible with the Hermitian metric, we get that 0 =
B + B* = B + B, which means that B € iQ(M). O

We now want to see that o/(.S) is actually non-empty as well.

Lemma 4.1.14. Let S — M be a complex vector bundle, then every algebra derivation of
End(S) is inner. More concretely, if 6 € End(End(S)) is such that §(AB) = (0A)B + AdB,
then there is C € End(S) such that 6 = [C,-]. Moreover, if S is endowed with a Hermitian
metric and 0 is such that 0A* = (0A)*, then there is C' € u(S) such that § = [C,-].

Proof. Let {¢;}; and {\*}; be collections in T'(.S) and T'(S*), respectively, such that >>; X(¢;) = 1
(using, say, local frames and partitions of unity), and define

Cyp:= Z 5(o @ N)ap;.

Then
(C, Alp = CAp — ACy
= Z (6(Ap @ N)wy — Ad(p @ X))
- Z (340 (p & X)wi — Ad(p & N)ws)
= Z SA)N' ($i)p) = (04)¢.

If S comes with a Hermitian metric and § is such that §A* = (§A)*, then we have that
0=0A" — (6A)" =[C, A" - [C, A" = [C + C*, A"],

for all A € End(S). Hence, C' 4+ C* lies in the center of End(S), so there is A € C°°(M) such that
C + C* = \. Since C + C* is self-adjoint, we actually have that A\ = A, so that A € C>°(M,R).
Consider now €' := C — 2. Then 6 = [C,-] = [C,],and C +C* =C +C* =\ =0. O
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Lemma 4.1.15. Let S — M be a complex vector bundle, then every connection on End(S)
compatible with the algebra structure, in the sense that Vx is an algebra derivation of End(S)
for all X € X(M), comes from an connection on S. If moreover S is equipped with a Hermitian
metric and V is unitary, in the sense that (VxA)* = Vx(A*) for all A € End(S), then it comes
from a unitary connection on S.

Proof. Let V be a connection on End(S) compatible with the algebra structure, and let V° be
any connection on S. Denote by VO the connection on End(S) induced by V°, which is also
compatible with the algebra structure. Then V = V° + B, for B € Q!(M, End(End(S))), and

since both V and V° are compatible with the algebra structure, we have that
Bx(AC) = (BxA)C + ABxC, for X € TM and A,C € End(S).

Hence, B actually takes values in the algebra derivations of End(S). By Lemma 4.1.14, then,
there is B € Q'(M,End(S)) such that By = [By,-]. Consider V := V + B, which induces V
on End(S).

If S comes with a Hermitian metric and V is unitary, we can run the previous argument
with V¥ a unitary connection on S. This gives that

(BxA)* = Bx A", for X € TM and A € End(95),

so that by Lemma 4.1.14 again we have that Bx = [Byx,| for B € Q'(M,End(S)) such that
Bx + B% = 0. Then V := V + B is a Hermitian metric on S inducing V on End(S). O

Proposition 4.1.16. Let S be a spinor bundle. Then o/ (S) is a non-empty affine space modeled
on iQY(M). Moreover, if V',V € d(S) with V' =V +ia, for a € QY(M), then

DY =Do+ia-y,  fory €T(S).
Proof. Let V be any unitary connection on S. Define § € Q'(M, End(End(S))) by
0XYa := VWa = V%Ya, for X € TM.

One can easily check that dx is actually an algebra derivation of End(S). Moreover, it preserves
adjoints: if a € CI(M, g) then
* _ 0
OxVa = 0XVe(a*) = VW9 (c(a*)) — VX Ve(a*)
= Ye((V%a)*) ~ e
= (6x7a)"

By Lemma 4.1.14, there is B € Q'(M,End(S)) such that dx = [Bx,‘| and Bx + By = 0.
Consider now V := V? + B. It is clearly Hermitian. It is also compatible with the Clifford
action: if a € CI(M, g), then

VxYa = vg('}/a + [BX7 ’Ya] = Vg{% + 6X’Ya = ’ng(a'

Hence, V € #(S).
If V' =V +ia, with V',V € &(S) and o € Q' (M), then

D' =5(V'Y) = y(Vi +ia @) = Dy +ia - . O



4.1. DIRAC OPERATORS AND SPINOR BUNDLES 21

In what follows we will identify CI(M,g) with Q(M,C) via the symbol and quantization
maps and the metric without further mention. By this we mean that if w € Q%(M,C) and
1 € T'(S), then by w -9 we mean ¢(w) - 1), where ¢ is the quantization map, and where w is
considered as an element of X2(M, C) using the metric g. We will also make the identifications
AN2T*M =2 N2TM =2 s0(TM), via g. From this perspective, if X,Y € TM, then X AY € so(TM)
is given by

(XAY)Z =(X,2)Y — (Y, Z)X.

Notice that if A € so(T'M), then we can extend A to Cl(M,g), since A preserves the ideal
I(M, g):
AXRX+|XIP)=AX @ X + X ® AX +2(AX, X) € I(M, g),

since (AX, X) = 0.
Lemma 4.1.17. If X,Y € TM, then (X AY)a = 3[X AY,a], for all a € C(M, g).
Proof. If Z € TM, then

(XAY)Z = (X,2)Y —(V,2)X
1
5(~XZY — ZXY + XYZ + X ZY)
1 1
SIXY, Z) = Z[X AY, Z).
2 2
If now Z; € TM, then

(XANY)Z Zk_ZZl A XAY)Z; - Zigr... 2y,
:7221 Zi A[XY, Z)Zis1 ... 2y,

:§(XY21...Zk—Zl...ZkXY)
1 1
= XY, 21 2] = S[XAY. 21 ).
O

Lemma 4.1.18. If (S = ST & S™,v) is a graded Dirac bundle, then v : CI(M,g) — End(S)
preserves traces, in the sense that tr(v,) = str(a), for a € CI(M,g) and where s = rkc S.
In particular, v is an isometry, where the Hermitian product on End(S) is given by (A, B) =
1tr(A*B).

In particular, if w € QF(M,C) and n € QY(M,C), then

* 07 k 7é e?
t p—
r(%%n) { s(w,n), k==«

Proof. First of all, if a = 1, then tr(v;) = s = str(1). If (e;); is an orthonormal basis for T, M,
then if & is odd, 7e, .., : St — SF, so tr(%il.--e%) = 0. On the other hand, if k is even, then

'k

tr(’)/ez'l---eik) = tr(fyeig---eikeil) = _tr(’yeil---eik)v
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SO tr(’yeil,,,eik) = 0 as well. On the other hand,
tr(eil ... eik) = U(eil .. .€ik)0 = (62'1 JANCERIAN eik)o =0.

Hence, v indeed preserves traces. This directly gives that + is an isometry.
In particular, if w € Q¥(M,C) and 1 € QY(M,C), then

0, k0,

O
8(5, 77>7 k=1

tr() ) = str(@'n) = {
Proposition 4.1.19. If S is a spinor bundle and V € A (S), then there is a purely imaginary
2-form FV € iQ%(M) such that

1 2
RY(X,Y) = S TRe(XY) T EFV(X,Y), for X, Y € TM,

where s := rkc S. Explicitly, F¥ = %tr(Rv). If moreover S = ST @ S~ is graded, then
FY = tr(RV") as well, where V' is the restriction of V to S+.

Proof. 1f a € CI(M, g), then

[RY(X,Y),7] = [[Vx, Vy] = Vixy}: Vd]
= ~[[Vy: 7], Vxl = [lva, Vx], Vy] =vg, o
= ~vge VI + Dvga Vvl =799, Lo
= YRI(X,Y)a = %[’YRQ(X,Y)a'Ya]‘
Since S is a spinor bundle, this means that RV (X,Y) — %'ng(X,y) is in the center of End(S5).
Hence, there is a two form FV € Q2(M,C) such that

1 2
RY(X,Y) = Svms(xy) + SFV(XY).

By Lemma 4.1.18, taking the trace of this equality gives that 2FY = tr(RV), which is purely
imaginary, since V is unitary.

Assume now that S = ST @ S~. If Z € TM, then the previous computation gives that,
restricting to ST:

- +
[RY(X,Y),72] = RV (X,Y)vz —vzRY (X,Y) = Ype(xv) 2>
so that, again by Lemma 4.1.18,

0=—s(RI(X,Y)Z,Z) = tr(Vz.pe(x,v)2)
=tr(yzRY (X,Y)vz + |1 Z|*RY" (X,Y))
= [1Z]* (= te(RY (X, ) + tr(RY"(X,Y))) .

Hence, tr(RY) = tr(RV") + tr(RY" ) = 2tr(RV"). O

Theorem 4.1.20 (Lichnerowicz formula). If S is a spinor bundle and V € o (S), then

1 2
/S va v Escalg + S
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Proof. We need only compute &% from the Bochner formula (Theorem 4.1.11) in this case. Using
Proposition 4.1.19 and the algebraic Bianchi identity for RY:

1
R = 3 > Ej- Ey- RY(Ej, Ep)
ik
1 1 2 o
= §ZEJ By | GRI(Ey, By) -+ _F (B, By
Gk 5
2
(RI(Ej, By )Ey, Ep) E;ELE By, -9 ;FV “1p

=51 > (B, BBy, En) + (RO(Ey, ) Ej, En)

—~

Rg(El7 Ej)Ekv Em>)EJEk’ElEm 1

> (RY(Ej, Ex)Ej, En)EfpEm -

+ o+

o= o =
.
=
3

2

.
e

,m
1 , 2
= > Ric!(Ej, Em)E;En -1 + gFV -9
7,m

1 2
— “scaldyp + ZFY - 9.
4 s

4.2 The Seiberg—Witten equations

In this whole section (S = ST + S~,~) will always be a graded spinor bundle and M will be
connected, orientable and closed.

4.2.1 The equations

For every 1 € T'(S), we can consider the endomorphism ¢ ®1 € End(S), by using the Hermitian
metric on S, by which we mean

(¥ ®@Y)p = (Y, p)1h.

It is of course self-adjoint. Its trace is given by:

tr(@ @) =3[ a)l* = [0,

where (;); is any local orthonormal frame for S. Hence, 1y ®v — 2|¢||? is a self-adjoint traceless
endomorphism of S, where s :=rkc S.

From now on, M will be 4-dimensional, in which case ST become rank 2. In such case, if
Y € T(ST), then ¢ ® ¢ — %HW’Q is a self-adjoint traceless endomorphism of S*. Recall that in
4-dimensions we have

End(ST) = C19.(M, g) = C>®(M)(1 +T.) @ Q% (M, C).
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Under such identifications, Endo(S*) = Q2% (M,C) (cf. Lemma 4.1.18), where Endo(S™) are
traceless endormophisms. Hence, we can think of 1) ® ¢ — $|[¢||? as a self-dual complex 2-form
on M. Moreover, it is purely imaginary. Indeed, if w € Q2(M, C) is such that v, is self-adjoint,
then

Vo = Vo = ~Va
SO w = —w.
Definition 4.2.1. The (perturbed) Seiberg—Witten equations for a pair (V,) € o/ (S) x
[(S*) and perturbation parameter n € Q?(M), with dn = 0, are

FY =9 @b 2|yl —ins, (11)
Dy =0. (4.2)

We define the configuration space €(5) := #/(5) x I'(ST), the target space % (95) :=
iQ2 (M) x T'(57), the Seiberg-Witten map SW, : €(S) = ¥%(S) given by SW,(V,v) :=
(Ff — q(¥) +in, DY), for q(p) = @1 — %quHQ, the solution space Z,(5) := SW;I(O,O) =
SWy ' (—in.,0), and the gauge group (M) := C>®°(M,U(1)).

Explicitly, (4.1) means that for all ¢ € S,

FY o= (4,009 — %III/JIW — N4 - P
We now begin the study of the moduli space of solutions to the Seiberg—Witten equations.
Lemma 4.2.2. The maps
G(M)xE(S) — €(S)
(u, V, 1) — (V= u~tdu, ut)

and
M) x¥(S) — %)
(w,w,0) = (w,up)
define left actions with respect to which SW,, is equivariant.
Moreover, if (V,1) € €(S), then its stabilizer Stab(V, 1) C &(M) is either trivial, if  # 0,
or U(1), if v =0.

Proof. That the action on €(5) is indeed a left action follows easily from
(uv)fld(uv) = v’lu’l(vdu + udv) = wdu + v dv,

for u,v € ¥(M). To see that SW,, is equivariant, first notice that V — v ldu = uVu™!, so
RV—u'du — 4y RVy~1 and hence FV~—4 "4 = FV_ On the other hand, q(uy)) = q(v)). Secondly,
by Proposition 4.1.16, if V' = V — u~!du, then

D () = P(ugp) —u™'du - (ua)) = ulpip.

Let now u € Stab(V,%). Then V — u~!'du = V if and only if u is constant, i.e., u € U(1).
But then uy = v implies that u can only be non-trivial if ¢ = 0. O

Definition 4.2.3. We define the Seiberg-Witten moduli space as 4, (S) := Z,(5)/%(M).
A solution (V,) is called reducible if Stab(V,) = U(1) (equivalently, if ¢y = 0) and
irreducible if Stab(V, ) = 1 (equivalently, if ¢ # 0).
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4.2.2 Seiberg—Witten functional

25

Although the Seiberg—Witten equations cannot be the Euler—Lagrange equations for any func-
tional, since they are first-order equations, they actually do arise from a variational setting.

Definition 4.2.4. We define the Seiberg—Witten functional & : €(S) — R by

scal

$7.) = [ IVl + 1T+ 5= [l + gl ) vor.

Lemma 4.2.5. The Fuler—Lagrange equations for the Seiberg—Witten functional are

VTG =~ (scal? + [0]7) 0
d'FY = fé Re(V),1)).

Proof. Let (V,¢) € €(S5). If ¢ € I'(S), then

d scal

dt 1=

sV w )= [ (290 V) +
—2 [ (Vv §<sca19 + [0IPYb, ol
M

and if o € Q' (M), then, using that FVT#* = FV 1 i2tda,

d

dt

S(V + ita, ) = 2Re(V, i AFY id 19
o (V +ita, 1) /M< e(Vi),ia @ ) + 4(F zoz>)vo

_4/<fFf+;Rdvmw%mWM$
M

Proposition 4.2.6. The Seiberg—Witten functional can be expressed as
S(V.0) = [ (1B +1FY = a@)]?) vole

Hence, the lowest possible value of 8 is obtained precisely on Z(S).

Proof. Let §(V, ) be the right-hand side of (4.3). First of all, note that

_ 1 |
a0 = (Fev-3vl*) = vl

Then, using Lemma 4.1.18, we find that

la()I? = @@, a(w)) = § rla@)?) = Sl
(FY q)) = (¥, q)) = § trreeqles)
fZ (i, Y - (8, i) = 4er2%>>

— Z<FV ) — §||¢||2t1“(’YFV)

(b.0) + 3 AP ) vol
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1

4<FV w7¢>

Now, using that I) is formally self-adjoint and Lichnerowicz’s formula (Theorem 4.1.20), we
finally see that

SV, = [ (0*0w) + IET I + a1 = 2(FY, q(0))) vol?
19
= [ (19012 + S5l IP + 57 - v,0) + | FY)?

g0l = SET 0.0} volr
= S(V.0),

4.2.3 The functional set-up

Let V € o/(S) be a spinorial connection, which we will take as a reference point in &/(S). We
will denote by I'g and C§° compactly supported sections and functions.

Definition 4.2.7. Let 1 < p < co. An LP-section of S is a measurable map v : M — S such
that ¢ (x) € S, for almost all z € M and ||¢|| € LP(M,R). We denote the space of LP-sections
up to equality almost everywhere by LP(S). For ¢ € LP(S), we define its LP-norm by

ol o= ([ ptrvors)

if p < 00, and [|9)||ec := ess sup ||¢|| if p = 0.
If 1 € L'(S), we say that 1) is k-times weakly differentiable if there is o € L' (T*M®*®9)
such that

/ (W, (VF)*B)vold = / (a, B)vol?, for all 8 € To(T*M®* @ 9),
M M
where V¥ : T(S) — D(T*M®* ® S) is the composition

rS) LTI Mes) Vs ... Y (T M g 5).

In such case we say that « is the weak kth derivative of ¢, and we write @kw = .

We define the Sobolev space L¥P(S) as the space of sections 1) € LP(S) such that 1 is
j-times weakly differentiable and V7t € LP(T*M®I @ S) for all 1 < j < k. If o € LFP(S), we
define its Sobolev norm by

k
1llkp = D IV llp-
j=0
Proposition 4.2.8. For all 1 < p < oo and k € N, the Sobolev spaces (L*P(S),|| - ||rp) are
Banach spaces.

Theorem 4.2.9 (Sobolev embedding, Rellich-Kondrachov and Morrey). 1. If 1 < p < oo,
then T'(S) is dense in L*?(S9).
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2. If k., € N are such that k > £ and 1 < p,q < oo are such that

Kk

TZ

l

S —
n

)

1
q

”3\»—‘

then LFP(S) embeds continuously into L%9(S), i.e., LFP(S) C L%(S) and there is a
constant C > 0 such that

Wollp < Clllleg, — for all € LP(S).

If moreover

1

ponoq
then the embedding L*P(S) C L(S) is compact, i.e., any bounded sequence in LFP(S)
admits a subsequence convergent in L“9(S).

ko1 é
n?

8. Ifk,f e Nand 1l <p< oo are such that

1k 14
—_ — < -,
p n n

then LFP(S) embeds continuously and compactly into TY(S), the space of C*-sections of S.
We will use the Sobolev spaces to topologize the moduli space 4, (S).

Definition 4.2.10. We make the following definitions:

A*P(S) {V—i—za o e LFP(T*M)},
ChP(S) = AMP(S) x LP(ST),
(5):

)

ykP(s ’p(z AL T*M) @ LFP(S™),
EPP(M) = {u € L*"(M,C) : |u(z)| = 1, for all z € M},

and for any ¥ € {4, €, %, %}, we let /F = pk2,

Lemma 4.2.11. For every k > 1, the map q : T(ST) — iQ%(M) eatends to a smooth map
q: LFFL2(SH) — LR2(i A2 T*M).

Proof. Let ¢ € L*12(ST). We begin by proving that ¢(y) € L¥2(i A2 T*M). Firstly,

1
[ llatw)Evots = < [ jltvots < oo,
M M

since LKT12(S+) C L*(S*) by the Sobolev embedding, because

1_k+1<0 1
2 4

Secondly, since q(v) = ¥ ® ¥ — %(1#, 1), we see that

i /.
=3 @ (50 Wty — 590,90

=0
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Hence, there is a constant C' > 0 such that

. j A A . A A
IV (@@)I* < C 32 IVDBIIVI @IVl V"),

£,m=0
Observe that for all £ =0,...,k we have that

1_k+1—€<17
2 4 !

so Vi e LFr1=62(5+) C L4(ST). The Holder inequality now gives that

J
IV (g@)IIE < C D0 IVl V@l VT llal V=l < oo,
£,m=0
finally establishing that q(¢) € L®2(i A2 T*M).
Observe now that

Dq(¥)p =@ — ¢ ® ¢ — Re(p, ¥),

which is (real) linear on . Hence, to see that ¢ is smooth it suffices to check that Dgq is
continuous. This follows from

I(Da(¥ + &) — Da(¥))ell = 7 @ € + € @ ¢ — Re(p, )]l < 3[i€]lllll- =

Proposition 4.2.12. Let n € LF2(A2T*M), for k > 1, be weakly closed (dn = 0 weakly), then
the Seiberg-Witten map extends to a smooth map SW,, : €FF1(S) — ¥k (S).

Proof. Identifying @/*+1(S) = LFtL2(iT*M) by taking V as a reference point, we can write
SW,, 1 i (M) x T(ST) — iQ2 (M) x ['(S7) as

SW(ia, 1) = (2i(da)y — q() + ing, P +ia - ).

Since both lAD and d are first order differential operators, they extend to smooth maps between
Sobolev spaces of the correct regularity. The result now follows from Lemma 4.2.11 O

We finish by proving that €**+2(M) is a Hilber-Lie group, for which we will need the following
result.

Theorem 4.2.13 (Sobolev multiplication). If k,¢ € N are such that k > £ and 1 < p,q < o©
are such that

- — =<0 and - —
p n p

then the multiplication of functions extends to a continuous map

<

)

1k 1k
n

| =
Sl

L¥P(M,C) x L*(M,C) — L"9(M,C).

Proposition 4.2.14. For every k > 1, the group €*T2(M) is a Hilbert-Lie group modeled on
LF22(M,4R), and the actions of €*2(M) on €*+1(S) and ¥*(S) are smooth.
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Proof. First notice that by Theorem 4.2.9 we have that €*+2(M) C C°(M, C), since

1 k+2 1
- —— < ——<0.
2 4 — 4
We can consider, then, the compact-open topology on €5+2 (M).
We will now provide charts for €5*2(M). Consider first

H = {uec M) :u(M)C U~ {-1}},
which is an open neighborhood of the identity. The charts will be given by the Cayley transform

as follows: consider the diffeomorphism 7" : C — C given by

_1—z

T(z) = T

It satisfies T = T~! and provides a diffeomorphism iR — U(1) \. {—1}. Consider now the
chart around the identity 7' : % — LF*>2(M,4R) given by T(u) := T o u, which is clearly a
homeomorphism. Around any point v € €**2(M), we define a chart T, : v# — LFt22(M,iR)
by T,(u) := T(v~'u). Its inverse is given by T, '(if) = vT(if), so the transition functions
LF22(MiR) — LF+22(M,4R) are given by

T.T, ' (if) = T(u"vT(if)),

which is smooth because T is so and the multiplication as well, by Sobolev multiplication
(Theorem 4.2.13).
Finally, the multiplication in local charts T, T, and T, is expressed as

(if,ig) — T(w™ "I (if)uT (ig))
and inversion in local charts T,, and T}, as
if — T~ ul(if)),
and both are smooth. O

Definition 4.2.15. We define Z¥™(S) as SW,1(0,0), for SW,, : €5*1(5) — #*(S), and
METL(S) = ZFT(S) /g 2(M).
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Lecture 5

Smooth solutions and dimension of
the moduli space

5.1 Elliptic operator theory

In the following, denote by K either R or C. Let E, F — M be K-vector bundles over a closed
manifold M . Then we get a Fréchet topology on I'*°(E) and I'*°(F').

Definition 5.1.1. An operator P from E to F' is a continuous K-linear map P : I'*°(F) —
I'*°(F) . The space of all operators from E to F' is denoted Op(E, F').
P is called local if P preserves supports: for every u € I'*°(E) , supp(Pu) C supp(u).

Remark 5.1.2. In the above definition, we assumed K-linearity. If we drop this condition, we
call P a nonlinear operator.

Local operators have the property that their behaviour is determined by how it looks in
charts: if P € Op(E, F) is local and U is an open subset, then for every ui,us € I'°(E) such
that ui|y = ua|v, we have (Puy)|y = (Pu2)|v, so Ply is a well defined operator. In particular,
if (U, ) is a trivialising chart! for E, F — M , we see that we get a well defined operator

P,:=poPyop L :T®(V xKF) - TV xK).

Definition 5.1.3. Let P € Op(E, F) be local and let m € Ny, then we say P is a differential
operator of order < m if for every trivialising chart (U, ¢), P, : T®(V x K¥) — I'*(V x K!)
is a matrix of differential operators of order < m, i.e.,

PH Plk
Pn ... Py

where P;; : C®°(V) — C*°(V) is a (linear) differential operator of order < m on V. We denote
the space of differential operators of order < m from E to F' by DO,,(E, F).

The following is nontrivial:

Lo will simultaneously denote the maps ¢ : U — V CR", ¢ : Ely — V x K" and ¢ : Fly =V x K.

31
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Theorem 5.1.4 (Peetre’s theorem). Every local operator on a compact manifold is a differential
operator of order < m for some m > 0.

Now we turn to some examples:

Example 5.1.5. Let M = S and let E, F = M x C. Then 0y is a differential operator of order
<1 from F to F'.
Define P : I'™°(E) — I'*°(F) by

Pi0):= [ (G0) - Tad

where f is the average value of f. Then P is not a local operator.

Example 5.1.6. Let E, F' — M be K-vector bundles, then
DOy(E, F) 2T (Hom(E, F)) .

IfE,F=MxK,
DO, (E,F) = Xx8(M) & T>(M x K),

where the first summand is the order 1 part and the second summand is the order 0 part.

In the above example, we see that DOy splits into an order 0 and a part of pure order 1.
This is not true in general, we cannot split DO,, into DO,,_1 and a part of pure order m : the
Laplacian on R? in Cartesian coordinates is

Age = =02 — 2.
If we transform to polar coordinates, we get
Age = =07 — }283 — %89,

so while it is of pure order 2 in Cartesian coordinates, it has an order 1 part in polar coordinates,
i.e., the notion of pure order is not coordinate invariant.

What is true, however, is that the part of pure order m is tensorial, so P € DO,,(E, F)
always defines a section P, € I'**(Sym™TM ® Hom(E, F)).

Definition 5.1.7. Let E,FF — M be C-vector bundles and let ©# : T*M — M be the real
cotangent bundle. The symbol map o, : DO,,(E, F) — I'*°(Hom(7n*E, 7*F)) is defined by

Om(P) :=i" Py, ,
interpreted as a Hom(FE, F')-valued homogeneous polynomial order m on T*M .

Remark 5.1.8. The above definition only makes sense for C-vector bundles because of the ¢ in
the definition. If we want the same definition for R-vector bundles, we could define 0., (P) = Py,
but since the above definition works better for complex vector bundles, and since we will really
only complex vector bundles in the remainder, we will restrict to the case K = C from now on.

Example 5.1.9. The following are the symbols of some well-known differential operators:
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1. Let Agrn be the Laplacian on R™. Then oo(Agn) = ;1:1(gi)2 , where &; denote the Carte-
sian coordinates on the fibres of T*R™ = R?w,...,mn) X R?&,...,ﬁn) .

2. Let X € X¥C(M) interpreted as a differential operator of order < 1 from M x C to M x C.
Then o1(X) =iX € Co(T*M) .

3. Let V : T®(E) — I'*(T*M® ® E) be a connection on a C-vector bundle E. Then V €
DOy (E, T*M® ® E) and

01(V)(€) = i€ ® — € Hom(r*E, n*(T*M® @ E)).
4. By antisymmetrising the previous example, we obtain
o1(d)(€) = i& A — € Hom(m* AFT* MC, 7* AFF1T* M ©)

The following is not too difficult to prove:

Proposition 5.1.10. Let Ey, Eo, E3 — M be complex vector bundles and let P € DO,,(E1, E)
and Q € DO,/ (Es, E3) for some m,m’ € Ny.

1. Ifm#0, om(P) =0.

[
2. If op(P) =0, then P € DO,,,—1(E, F).
3. Qo P eDO0yipmy and oy (Q o P) = 0y (Q) 0 oy (P) .
4. If M is Riemannian and E\, Ey are hermitian, the formal adjoint P* : T'°°(Ey) — I'°(E})
defined implicitly by
/ (Pu,v)pvol = / (u, P*v) g vol; u€eP(E),veI'™(Ey),
M M

is well defined and satisfies P* € DOy, (E2, E1) and o (P*) = (om(P))*.

Definition 5.1.11. Let E, F — M be complex vector bundles and let P € DO,,(E, F') . Then P
is elliptic if 0,,,(P)(§) € Hom(Er (), Fr(¢)) is invertible whenever £ # 0. Denote by DOYY(E, F)
the space of all elliptic operators from E to F'.

If Ey, ..., E; — M are complex vector bundles and P; € DO, (E;, Ejt1) for i =1,...,1—1
are such that P, o P,_1 =0 for every i =1,...,l — 1, then the complex

T (Ey) R roo(By) — Py L 228 poo(g )
is elliptic if the associated symbol sequence
amq (Po)(§) omq (P1)(€) omy_1(Pr—1)()

0 —— Eorey —— L -1,m(e) — 0

is exact whenever & # 0.

The following facts are fundamental facts for the analysis of differential operators. From
now on, for simplicity, we will implicitly assume M is compact, although sometimes one can get
away with picking a Riemannian metric on M and hermitian metrics on every relevant vector

bundle.
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Theorem 5.1.12. Let E, F — M be complex vector bundles and let P € DO,,(E, F). Then for
every k € Ng and p € [1,00), P extends canonically to a continuous linear map P : LFT™P(E) —
LEP(F).

Theorem 5.1.13. Let E, F — M be complex vector bundles and let P € DOf;L(E7 F). Then
there is an operator Q € OP(F, E) such that for every k € Ny and p € [1,00), Q extends to a
continuous linear map Q : L*P(F) — L*+™P(E) such that id — Qo P : LK*™P(E) — Lk+m»(E)
lands in L*™+HLP(E) andid — P o Q : LFP(F) — LFP(F) lands in LF1P(F).

Definition 5.1.14. The operator Q € OP(E, F) is called a weak-inverse to P .

Remark 5.1.15. An elliptic operator usually doesn’t have a unique weak inverse. In fact, a weak
inverse can always be chosen such that id — QP and id — PQ land in I'*°. Moreover, () is not
local, so it is not a differential operator, it fits into the theory of pseudodifferential operators.

Example 5.1.16. Let M = S' and E,F = M x C. Then the operator 0 is elliptic with weak
inverse

0 —
QU)O) = [ (0)~Trao'
where f is the average value of f .

From this point onwards, we need compactness everywhere, one can no longer get away with
picking metrics. One nice thing about elliptic operators (on compact manifolds) is that they are
Fredholm?.

Theorem 5.1.17. Let E,F — M be complex vector bundles and let P € DOSY(E, F). Then for
every k € Ng and p € [1,00), P : LF*™P(E) — L*P(F) is a Fredholm operator.

Proof. Since P is elliptic, it has weak-inverse Q € OP(F, E). Then id — PQ : LFP(F) — L*P(E)
lands in L*+1P(E) , but by Rellich-Kondrachov, the embedding L*¥*1P(E) — L¥P(E) is compact,
so id — PQ : LFP(E) — LFP(E) is a compact operator. Likewise, id — QP : LF*™P(F) —
Lk+mp (F) is compact. Thus, P is invertible up to a compact operator, so P is Fredholm. [

Theorem 5.1.18. The Fredholm index® of P € DO‘;,ILI(E,F) depends only on topological prop-
erties of oy (P). Moreover, the index of P is independent of k and p.

Remark 5.1.19. The above theorem is stated in rather vague terms. The precise statement here
is known as the Atiyah-Singer index theorem. This theorem also gives a precise formula for this
index in terms of a K-theory class associated to op(P).

Example 5.1.20. The following are examples of symbols of certain elliptic operators

1. Let X € X®(S') be nonvanishing, and interpret X as an order < 1 differential operator on
the trivial line bundle S! x C. Then X is elliptic and it can be deformed into 9y through
elliptic operators, so index(X) = index(dy) = 0, since

ker(dy) = coker(dy) = {constant functions} .

2Recall that a Fredholm operator is a linear operator with a finite dimensional kernel and cokernel.
3Recall that the Fredholm index is dim(ker(P)) — dim(coker(P))
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2. The following can be computed using the full Atiyah-Singer index theorem: let (M*, s) be
a spin® manifold with spinor bundle S'. Then
c1(det(s))? — o (M)
8 b

index(Pg) =
where o (M) is the signature of M .

3. Let M be a Riemannian manifold, then d + d* : Q¢ (M) — Q°4(M) is a Fredholm
operator with index(d+ d*) = x(M), which is a consequence of the Hodge decomposition
theorem.

Another nice thing about elliptic operators is that they behave extremely well with respect
to regularity:

Theorem 5.1.21 (Elliptic regularity). Let P € DOYNE, F), u € L™P(E) such that Pu €
LFP(F), then u € LF™P(E).

Proof. Let Q be a weak inverse to P. Since Pu € L*P(F), we see QPu € LF™P(E). We
also know u — QPu € L™TYP(E), so if k > 1, we conclude u € L™t'P(E), but then u —
QPu € L™2P(E), so if k > 2, we conclude u € L™*2P(E). Tterating this k times, we find
u € L™TFP(E). O

Remark 5.1.22. The above proof technique is known as bootstrapping: one cannot pull themself
up by their own bootstraps, but a solution to an elliptic equation can pull its own regularity up
by using its own regularity.

Corollary 5.1.23. Let m > 1, P € DO.,(E, E) and let u € L™?(E) be an eigenfunction of P .
Then u is smooth.

Proof. Let A € C be the corresponding eigenvalue of u . Then the operator P — Aid is elliptic, as
its degree m part agrees with the degree m part of P, so oy, (P—Aid) = 0,,,(P) . But Pu—Au =0,
and 0 is smooth, so u is L¥P? for any k, so by Morrey’s theorem, u is smooth. O

5.2 Applications to the Seiberg-Witten moduli space

For this section, we let (M*,s) be a spin® manifold with spinor bundle S and we pick a smooth
reference connection V on det(s) .

5.2.1 Smoothness of solutions

Theorem 5.2.1. Let n € Q3 (M) and (i) € Z7(S). Then there is a u € §3(M) such that
u- (o, v) is smooth. Le., every solution to the Seiberg-Witten equations with regularity L*? can
be gauge-transformed into a smooth solution.

Proof. Using the Hodge decomposition theorem, we write iac = icg + ¢df + id*, where «q is
harmonic, f € L3*(M) and 8 € L»2(A2T*M). Pick u = e/ € €3, then u - (ia) = (iag +
id* B, el ) =: (ia, ).

Now we will use the Seiberg-Witten equations to bootstrap the regularity of (i, zZ) then tell
us

Dj=—a -
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2id"a = q() —in— FS .

Since &,QZ have regularity L??, the Sobolev embedding theorem imply they are LP for any
p € [1,00), so the Holder inequality tells us ic - ¢ € LP for any p. Thus, the first equation
implies ]ﬁ@; is LP | so ellipticity of the Dirac operator and the elliptic regularity theorem, we
conclude 1 is LY, so the Holder inequality tells us q(i) is also L'P , so dta is also LP.
Now, dT+d* : Q' — Q2 Q0 is an elliptic operator?, and @ is coclosed, so d*a = (d* +d*)a,
so elliptic regularity implies & is L??. Now we keep bootstrapping to find (i&ﬂz) is smooth,
completing the proof. O

Corollary 5.2.2. Let k,l € N, then ./%7’7”1(5) = ./%fl+1(5) . Le., the moduli space is independent
of k.
5.2.2 Expected dimension of the moduli space

At this point, we know nothing about the moduli space, but we can compute the dimension of
the Zariski tangent space of /%g by linearising the Seiberg-Witten operator around a point in
2’3(5’ ), computing the kernel, and quotienting out the image of the infinitesimal action of the
gauge group.

Lemma 5.2.3. Let (io,v) € Z7(S), then:
1. the infinitesimal action a®|(;q ) : L¥*(M,iR) — G€3(S) = L**(iT*M & S*) is given by
0| (iap) (if ) = (—idf,if1)); (5.1)
2. the derivative D SWy| g : L*2(iT*M & ST) — LM (iA2T*M & S™) is given by
D SWy |0, (B, ©) = (2id" 5 — Daly (), P + i - o +if - 1), (5.2)

where Dqly(9) =P @Y + ¥ @ ¢ — ({0, 9) + (,9))/2.
Proof. 1. Let f € L>?(M,iR). Then we compute

‘ d i .
C‘Q\(m,w) (if) = Zl € It (i, )
t=0
= T (i — tidf, eTtap)
= (—idf,if).
2. Likewise, let (i3, ) € L?2(iT*M @® ST). Then we compute
. d . .
D SW, o 16:9) = G| SWyia-+ 1B+ 1)

~

= (2idTa + 2tid"T B — q( + to) +in, P( + to) + (ia + tif) - (Y + tp))
— (2id* B — Daly(p), Py +ic- o +if - ).

O

4To prove this, note that ker(a1(d¥)(€)) = {A\&} for nonzero ¢ € T*M , but o1(d*)(€)(A) = N|€]|?, so the
symbol of d™ +d* : Q' — Q3 ® Q° is injective.
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Theorem 5.2.4. Let (ia, ) € .iZ",?(S), then the sequence (SWy (i, v),d) defined as

& (i) D SWal(ia,p
—_

0 —— L»2(M,iR) L22(iT*M @ ST) ) LY T*M @ S7) —— 0

is an elliptic complex. Le.,
D SWyl(ia.) © @*l(iaas) = 0,

and the associated symbol sequence

o1(0%](ia,p)) o1(D SWal(ia,p))
— 0

0 —— 7R ™ (T*M & ST) ———— 1 (IN2T*M & S™) —— 0

is exact. Moreover, the real Fuler characteristic satisfies

2X(M) + 30(M) — c1(det s)? .

X(SW;Gia, ), d) = ]

Proof. Most computations here are straightforward, so we will focus on the computation of the
Euler characteristic. To compute that one, note that the Euler characteristic only depends on
the principal part of the elliptic complex. The principal parts form the following elliptic complex

(d,0) 2+ a1

0 —— L32(M,iR) L22(iT*M @ S+) LY2(iAT*M ® 57) —— 0,

which splits into a direct sum of the following sequences

0 —— L32(M,iR) 22 [22(7 M) 245 [12(GA2 T M) —— 0

0 0 12205+ — 2, ey .

The Euler characteristic of the top sequence is 1 — by + by = (x(M) + o(M))/2, whereas the
real Euler characteristic of the bottom sequence is (o(M) — c1(det s)?)/4, as given in Example
5.1.20 2, completing the proof. O

If we add the observation that the gauge group acts freely on irreducible solutions, we obtain

Corollary 5.2.5. Let (icv,¢)) € Z(S) be irreducible. Then the dimension of the Zariski tangent
space Lo p) My is

—2x(M) — 30(M) + c1(det s)?
4

+ dim(H*(SWy,d)) . (5.3)
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Lecture 6

Compactness of the moduli space

In section 4.2.3, we introduced the spaces on which we study the Seiberg-Witten equations. The
goal of this chapter is to show that the moduli space /%7’7““ introduced on page 29 is a Hausdorff
and compact topological space.

The gauge action by €*+2 on €**! gives rise to a quotient space, which we denote by
BF1 = @+ /©++2 Then we have /%717”1 C B! as a topological subspace. Therefore, it
is sufficient to show that %+ is Hausdorff to conclude that ./%,’7“ is Hausdorff, and this is
precisely what we will do.

Then after we have established Hausdorffness, we will establish a priori bounds for the
solutions of the Seiberg-Witten equations. These bounds then allow us to show that /%,’7“1
is also compact. Moreover, using these same bounds, we will show that given a Riemannian
manifold and a perturbation parameter 7, there are only finitely many spin® structures that
admit admit solutions and have non-negative formal dimension.

The contents of this chapter are mainly based on section 2.2.1 of [Nic00] and chapter 4 and
5 of [Mor96].

6.1 Multiplication of functions in Sobolev spaces

In the course of this chapter we will regularly need to multiply functions that live in Sobolev
spaces. However, in general there is no reason for these products to be an element of a Sobolev
space again. The following theorem gives us conditions under which the product of functions in
certain Sobolev spaces are again in a Sobolev space.

Theorem 6.1.1 (Theorem 7.3 in [BH21]). Assume that s;, s are natural numbers and 1 < p; <
p < oo (i =1,2) are real numbers satisfying
(i) si>s
(ii) s> 0
cee L i _ l
(iii) s; — s > n(pi p),
. L1 1
(iv) 51+52—5>n(]71+}72—5).
Then the map

LSUPL 5 [52:P2 _y L&P’(f’g) — fg

1s continuous bilinear.

39
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From this we deduce the following results, which we record in separate lemmas to be used
later in our proofs. The proof of each of these lemmas is checking that conditions 1-2 in the
theorem above are satisfied.

Lemma 6.1.2. Let k, ¢ be integers. If k > 3 and k > £, then the map
LE2 % L9 — L2, (f.9) = fg
s continuous bilinear.

Lemma 6.1.3. Let p > 2. Then the map

L22 X L2 = L22,(f,g) = fg
is continuous bilinear.
Lemma 6.1.4. Let 1 <p <4 and let p < q. Then the map

L*? x LM — LY (f,9) — fg
is continuous bilinear.
Lemma 6.1.5. Let 1 < q < p < oo. Then the map

L*? x IP — LY (f,g) — fg

s continuous bilinear.

Proof. From the Sobolev Embedding Theorem, theorem 4.2.9, it follows that L*? < L" for all
1 < r < oo. The result now follows by the Holder inequality. O

6.2 Hausdorffness of the quotient space

In this section, we will show that %**! is a Hausdorff space. We do this by showing that the
action of the gauge group %12 on €**! is proper. For more details on proper group actions in
general, see appendix A.

Proposition 6.2.1. Let (¥, Ay,) and (pn, By) be sequences in €F1 converging to (¥, A) and
(1, B) respectively. Suppose that for each n we have a v, € €2 such that

Tn * (wnvAn) = (,U/Tan)

Then there is a subsequence of (vn) which converges to v € €82, Moreover, we have

v (¢,A) = (N? B)
Proof. Since 7y, - (¥n, Apn) = (i, Bp), we have

1
d’)/n = iyn(Bn - An)

We note that the operator d+d*: Q" — Q°4d ig elliptic and that for functions (d+d*)y = d.
We make a case distinction between kK = 1 and k£ > 2.
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Case k = 1: We have v, € L3? so by Morrey’s theorem, theorem 4.2.9, all v,, € C°. Then
we obtain a bound

ldvallza < Cllvallcoll B = AnllLa

for all 1 < q < oo. By elliptic regularity, theorem 5.1.21, it follows that ~, € L9 for all
1 < g < 00. Then by lemma 6.1.4 we have

ldvall e < Cliynllprall Bn = Anll 22

for 1 <p <4andq>p. Sody, € L' for 1 < p < 4 and so by ellipticity we have v,, € L?>*. We
have i — % < % — i, so by the Rellich-Kondrachov theorem, theorem 4.2.9, we have a compact
embedding L?* < LY. So there is a L'%-convergent subsequence of 7,,, which we will denote
still by 7,. It converges to some v € L6, By Morrey’s theorem, theorem 4.2.9, L6 < CY so
this subsequence also converges in the C¥ sense. In particular we see that |y| = 1 everywhere.

We have dv,, — dvy in LS. By lemma 6.1.5 we obtain that %’yn(Bn —A,) — %'y(B — A) in
LS as well. So dy = %'y(B — A). Then by lemma 6.1.4 we see that %fy(B — A) is in LY for
1 < p < 4. So by ellipticity, ¥ € L>*. Then by lemma 6.1.3 we see that %’y(B — A) is in L?2,
so by ellipticity v € L»2. So v € €¥*2. Finally, we have v,1, — vt by lemma 6.1.2 and so
v (¥, A) = (u, B).

Case k > 2: Then we have v,, € L¥t22. By the Rellich-Kondrachov theorem, theorem 4.2.9,

Lk+1,2

this embeds compactly in L*t1:2 so we have a convergent subsequence in , which we also

denote by 7,. Then as above, we obtain that |y| = 1 everywhere and dy = 3v(B — A). Then
by lemma 6.1.2 we see that dy € LFT12, so by ellipticity v € LFT22. So v € €*+2. The final
assertion again follows from lemma 6.1.2. O

Remark 6.2.2. This proposition can be generalised to nets of configurations and gauge group
elements. This would yield another proof of the Hausdorffness, where one can circumvent
appealing to first countability of the quotient space.

This proposition implies the following.
Corollary 6.2.3. The action €*t2 ~ €+t is proper.

Proof. Let (1, A,) C €1 a sequence and ~,, C €¥*2 a sequence. Assume that (¢, A,) —
(1, A) and that ~, - (¢, An) — (1, B). Then defining (pn, Bp) = Yn - (¥n, An) we see that we
satisfy the condition of the theorem, so =, has a convergent subsequence. Hence the action is
proper, by proposition A.0.2. ]

This implies the Hausdorffness we claimed.
Corollary 6.2.4. The quotient space B+ = €1 /€k+2 s Hausdorff.

Proof. By corollary 6.2.3 the group action is proper. So by proposition A.0.6, the quotient
BF+1 = gkt /gk+2 is Hausdorff. O

Corollary 6.2.5. The Seiberg- Witten moduli space /%TI;H is Hausdorff.

Proof. The moduli space is a subspace of &+ *t1, ]
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6.3 Curvature bounds

Our next goal is to show that the moduli space is compact. For this we need to estimate the
different terms in the Seiberg-Witten equations. In this section we will establish some of the
necessary bounds.

We start by estimating the norm of the Clifford action ~.

Lemma 6.3.1. Let a € iQ2 (M). Then the we have the pointwise identity
|’Ya|2 = 4|Oz|2,
using the Frobenius norm.

Proof. This identity holds pointwise, so it suffices to check it in a point x € M. The Frobenius
norm is given by |v.|* = tr(vi7a). Since a is in iQ% (M), we have 7}, = —v,. There is a
orthonormal basis {ng, 71,72} for A2 T M given by

dz' A da? + da® A dm4)
da' A dz® — dz? A d:v4>
dzt A da* + da® A dm3> ,

where (2%) are normal coordinates at x.
A computation shows that this basis has the property that v(n;)? = —2id and (g )y () = 0
for k £ [ at x. So if we write a = Ezzo agNk, then we have with Clifford multiplication that

2 2
2oy (Z aknk> = -2 (Z a%) id
k k=0
This identity map lives on a (complex) dimension 2 space, so tr(id) = 2. Hence the norm
V(@) = 4]af”. [

Next, we have the following equation for solutions of the unperturbed Seiberg-Witten equa-
tion.

Lemma 6.3.2. Let (¢, A) be a solution to the unperturbed Seiberg- Witten equations on a com-
pact four-manifold M. Then

IV)IZe + 5 <C L, )2 0.

Ll _
4

Here scal denotes the scalar curvature of M.

Proof. Since (¢, A) is a solution to the Seiberg-Witten equations, we have )y = 0, so by the
Weitzenbock formula, theorem 4.1.20, we have
1 F
0= D=V + g+ 2o,

Using the Seiberg-Witten equations, we can therefore write

2
0= v+ My L (mw [, )w
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o scal W|2
=V*'Vy + 4@ZJ+ T

Taking the L?-inner product with v then yields the asserted equality. ]

This implies the following result for the non-existence of irreducible spinors.

Corollary 6.3.3. Let M be a compact four-manifold. Let k\; = maxzcn(0, —scal(z)). Then

Ky llvllZ2 > ([0l

In particular, if M has non-negative scalar curvature, then any solution to the unperturbed
Seiberg- Witten equations has trivial spinor field, i.e., it is reducible.

Proof. We have for all z € M that —scal(z) < k), so scal(x) > —k},;. Therefore

(scaltp, ) = [ scallfvol, =~y 0]

Using the equality from the previous lemma, we obtain

1 1 1 1
I S IVILe + vl = = (scalty, ) < SrplllIZe.

The final assertions follows by noting that for a manifold with non-negative scalar curvature
Ky = 0. [

Next, we will derive a pointwise estimate for the spinor. To do this we need the following
lemma’s about the gradient and the Laplace-Beltrami operator.

Lemma 6.3.4. Let (M, g) be an n-dimensional Riemannian manifold. Let f € C*°(M) and let
(E;) be a local orthonormal frame of TM. Then the gradient of f is locally given by

n

grad(f) = 3 Ei( ) Ex.

=1

Proof. Let (¢7) denote the orthonormal frame of T*M dual to (E;). Then we have &7 (E;) = 5{ ,

SO
n

df =3 df(Ej)e’ =Y E;(f)e.
j=1 J=1

Since the frame €/ is orthonormal dual to E;, we have (¢/)* = E;. So

n

grad(f) = (df) = D_E;(f)(€) = Y Ej(HE;.
j=1 j=1
Recall that the Laplace-Beltrami operator is defined as A: C*°(M) — C>*(M),

A(f) = —div(grad(f)).

We then have the following local form.
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Lemma 6.3.5. Let (M, g) be a Riemannian n-manifold. Let (E;) be a local frame of TM. Let
VY denote the Levi-Civita connection and let f € C°(M). Then we locally have

A(f) == (B — (VEENL)) -
i=1
Proof. The divergence of a vector field X € X(M) is given in general by

div(X) = tr9(VIX) = Y g(V X, Ej).
=1

Then using lemma 6.3.4 we compute
Vi (grad(f)) = 3 Vi, (B; () E))

= (EiEj(f)Ej + Ej(f)VgEiEj) -
So we have

A(f) == Y (9(BE;(f) By, B) + B (£)g(V, By, )
i,j=1

== Zn: EiE;(f)d5: — Z E;(f)g(V,Ej, Ei)

3,j=1 4,j=1

=S EXf)+ Y. Ei(f)e(E;, VY, E;)
i=1 i,j=1

== > (B ()~ (VLEN)
i=1
where we used that for an orthonormal frame we have
0= Eig(Ei, Ej) = 9(V, Ei, Ej) + 9(Ei, V, Ej).
O

Lemma 6.3.6. Let (E,(-,-),V) — (M, g) be a Hermitian vector bundle with metric connection
over a Riemmanian n-manifold. Let (E;) be a local orthonormal frame of TM and let ¢ € T'(E)
be a section. Then we have

A([]?) = 2Re((V*VY, 9) =2 Vg0
=1

Here V* denotes the formal adjoint of V as defined in definition 4.1.9.

Proof. We have

N B2, ) = = 3" Ei (Ve ¥) + (¢, Vi)
i=1 i=1
==Y (VEVEY,¥) +2(VEY, V) + (U, VE VED))

=1
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=2 |Vgy[* =2 Re((VE, Vg, ¥)).
=1 =1

On the other hand we have

'Mz

@
Il
—

ViVY = —tr?(V(Vy)) = Ve, (V)(E;)

||
M:

>~ (Ve Vit = V(VE,E))

s
Il
—

[
!
(]

(invEﬂ/) - Vv%iEi%Z’) ; (6.1)

.
—_

where V9 is the Levi-Civita connection. So then we have

n n

(V*VY,0) = =Y (Ve VB, ) + > (Ver 5 ,0).
i=1 i=1 ¢
Hence

n

2Re((V*Vh, 1)) = —QZRe (Vg Ve, b)) Z ( Vg, B, ) + (w,vv%i&w)

i=1

= 23" Re((VE Vi, ¥)) Z D(1vI?)

=1

Combining this with equation (6.1), we obtain

SN B2 + 3V B)(P) = 2Re((V V) — 23 [Vl
=1 =1

=1

So by lemma 6.3.5 we obtain

A(l0[2) = 2Re(V* Ve, 1) — 23 [V 02

i=1
O

Lemma 6.3.7. Let M be a compact Riemannian four-manifold. Suppose that (1, A) is a solution
to the Seiberg- Witten equations. Then for every x € M we have

()| < maX(gé%(‘llm(y)l —scal(y)),0).

Proof. Note that this inequality is invariant under gauge transformations. Therefore we may use
theorem 5.2.1, which says that every solution to the Seiberg-Witten equations is gauge equivalent
to a smooth solution, to show this inequality. So assume without loss of generality that (1, A)
is a smooth solution. Then by the Weitzenbock formula and Seiberg-Witten equations we have

1 2
0=v* v¢+mw+|ﬁ’

—ins .
Let ¢ be a point of M where |¢)(z)|? attains its maximum. Then taking the inner product with
1 and evaluating at xg we obtain

‘w(x0)|2+ |¢(900)|4 _1_1

scal(zg)
: 4 2 <

4

(V*VY(20), 9 (0)) + Ny (o) - (o), Y(ao)) = 0.
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Let (F;) be a local orthonormal frame for TM. Then by lemma 6.3.6
4
Al (@)[?) + 2 Ve (¥ () ? = 2Re((V*Vip(2), ¥ (2)))-
i=1

Then in a local maximum g we have A(|y(2)[?) > 0. So Re({V*V1(z), ¥ (x))) > 0. Therefore

we obtain
scal(x 0)|* i

Then the Cauchy-Schwarz inequality gives us a bound on Re(5(n+ (o) - ¥(z0), ¥(20))), namely

Y (z0)? +

at most
[+ (o) |9 (0) %,

where we used lemma 6.3.1. So we have |¢)(x¢)| = 0, in which case 1) = 0, or we obtain the
o (20) , [9(ao)l?

scal(xg P(xg

0= + = [n4(@o)l,
4 4

S0

[(20)|? < 4l (z0)| — scal(zo),

and the asserted inequality follows, since for all x € M,

()] < [¥(z0)[* < 4ln4(20)| — scal(wo) < maX(gg}@i(lem(y)l —scal(y)),0)

O]

Corollary 6.3.8. Let M be a compact Riemannian four-manifold. Suppose that (1, A) is a
solution to the Seiberg- Witten equations. Then for every x € M we have

1
|4 (2)] < 5 max(max(4]n (y)] — scal(y)), 0) + |ny- ()]
yeM
Proof. The Seiberg-Witten equation gives F{ =1 ® 1 — %id —ing, so |Fi(z)| < 3lv(2)]* +
|n+ ()|, so the result follows from the previous one. O

We need the following lemma to obtain our first major result about compactness.

Lemma 6.3.9. Let (M, g) be a Riemannian manifold of dimension 4. Let w € Q*(M). We may
write w = wT +w™ where w is self-dual and w™ is anti-self-dual. Then we have

[ = it = oI
M
Proof. We have
wE Awt = 40T A xw® = +{0F wF)vol, = +|jw|*voly,
and

(wh w™)voly = (W ,whvoly = w™ Axwt =w™ Aw™

=whAw™ = —wm Axw™ = —(w,w)voly,
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so wE AwT = 0. So we have
/ w? :/ (W +w™)?
M M
= [ Q1 = o 2voly
M

= (w12 = w7 1132)

In the next theorem we use the following notation:
Ky = 1;16%\:2((0, —scal(z))
N = 4 — 1 .
M maX(r;é%( 7+ (y)| — scal(y)), 0)

Theorem 6.3.10. Let M be a compact Riemannian four-manifold. Then there are only finitely
many spin® structures up to isomorphism for M such that the moduli space of solutions to the
Seiberg- Witten equations is non-empty and has non-negative formal dimension. For any solution
(1, A) to the Seiberg-Witten equations at which the formal dimension is non-negative and for
any x € M we have

[W(@))* <k,
Ky, 1 _ -~
IV (@)[I72 < (M + Sk T HmHoo) Kag,vol(M)

|5 (2)] <

IFL1I7> < — vol(M)

|Fy |32 < vol(M) — 872y (M) — 12720 (M).

Proof. The first and third inequality were already established above. The fourth one follows
from the third one by integrating over M. For the fifth one, we have formal dimension

c1(L)? — (2x(M) +30(M)) >0

by corollary 5.2.5 and by lemma 6.3.9 we have

1
2 2 —2
e(8)* = 15 (IE413: — I1Fx112)
Combining these two facts yields the fifth inequality. Finally, the second inequality we obtain
from the Weitzenbock formula

O:V*V¢+&alw+ﬂ~w
4 2
and the bound on |F{ ()| for all z € M.
It remains to show that there are only finitely many spin® structures up to isomorphism
with non-empty moduli space and non-negative formal dimension. Suppose we have a solution
(1, A) of the Seiberg-Witten equations at which the formal dimension is non-negative. Then by
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the preceeding, we have a bound depending only on the geometry of M and the perturbation
parameter  on both [|F} [|2, and ||F;||2,. So the cohomology class represented by 5= Fj4 lies in
a compact subset of H2(M,R). Moreover, since this is the Chern class it must also be integral,
so there are only finitely many possibilities for this class. So there are only finitely many spin®
structures whose determinant line bundle has this given first Chern class. O

6.4 Compactness

To show compactness we will first show that we can always find a representative of a point in
the moduli space subject to specific conditions. This process is called gauge fixing. We can
then use this fixed gauge to obtain more a priori bounds for solutions of the Seiberg-Witten
equations. Using this bounds for low regularity solutions, we can use elliptic bootstrapping to
obtain bounds for higher regularity solutions as well. Finally, we will use all these bounds to
argue that the moduli space is compact.

6.4.1 Gauge fixing

The goal of this section is to fix gauge and find a specific representative for a solution to the
Seiberg-Witten equations.

Lemma 6.4.1 (Gauge-fixing Lemma). Let £ be a complex line bundle over a compact Rieman-
nian four-manifold M with a hermitian metric. Fiz a unitary C*° connection Ag on L. Then
for any £ > 0 there are constants K,C > 0 depending only on M, Ay, £ such that the following

hold: For any L%? unitary connection A on L there is an L*12 change of gauge o such that
o A= Ay+ a where a € LY?(T*M ® iR) satisfies d*a = 0 and

ladfee < CIFA I e-ra + K.

Proof. Let a9 = A — Ay € LY?(T*M ® iR). By the Hodge decomposition we find f €
LAY (M 4R), B € L V2(A2T*M ® iR) and w a harmonic 1-form such that

ap =df +d*f + w.
Then v := exp (%f) € L2, Then we have dy = %’ydf and we have
y-A=A-2yldy=A—df = Ag+df +d*B+w—df = Ag +d*B + w.

Define a = d*8 + w. Now, FX is the self-dual part of the curvature of the connection A, so in
particular we have dTA = FX. Then it follows that

(d* +d)(dB+w)=d"(d*B+w) =d*(y- A~ Ag) = Ff — F1..

Then ellipticity of (d*,d") gives us the following bound for a constant C' depending only on M
and ¢ (here and in the following C' may be increased between estimates)

ld*Bllee < Cli(@*d B, d*d*B)||* = CIF4 = FjI1e12 < CIFL L1z + CIFL e
Then with K; = HFXOH%Z_LQ we have

ld"BlIZe2 < CIFL[|Zi-12 + CK.
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Next, we need to bound the harmonic component w. We do this by applying a further gauge
transformation.

Let H' denote the space of purely imaginary harmonic 1-forms. Let wy € H' and assume
that all periods of wy lie in 27iZ. Let M be the universal cover of M. Then integrating wg along
curves starting at a base point g € M gives a map f: M — iR. Then ¢ = exp(f) descends to
amap ¢: M — S! since all periods lie in 27iZ. Then dy = pdf = @wy, s0 wo = ¢~ Ldep.

Let A denote the lattice of purely imaginary harmonic 1-forms in H' with periods in 4miZ.
Then H'/A is a torus, so there exists a constant Ky depending on £ such that any wg can be
written as wo = wi + 2wy with wy € %A and ||(,u1|]%¢,2 < K.

We now apply this to our harmonic component w = wy 4+ 2wy. Then we has periods in 27iZ,
so there exists a p: M — S! such that wy = ¢~ 'dp. So we have

o (Ao +d*B+w)=Ag+d'f+w—2p  dp=Ag +d*f +wr.
So we for a = d*f 4+ w1 and 0 = ¢y we have d*a =0, 0 - A = Ap + a and
ladZee < lwillfes + 1d*Bl7ne < Ko+ CK1 + CIF 112

so with K = K9 + C'K; the result follows. O

6.4.2 More bounds

In section 6.3 we found bounds on the spinor ¥ and the curvature FX which essentially only
depended on the geometry of M. In this section we will obtain bounds on dF;l|r and A. To do
this, we need the following lemma.

Lemma 6.4.2. Let M be a manifold and let V be a torsion-free connection on TM. Let Alt
denote the antisymmetrization map. Then we have for w € QF(M)

dw = Alt(Vw),
(where ¥V is the induced connection on AN*T*M ).

Proof. Tt suffices to check this on 1-forms, since both sides are anti-derivations. So let w € Q(M)
and X,Y € X(M). Then we have

AL(VW)(X, V) = (Vxw)(¥) — (Vyw)(X)

= X((Y)) = w(VxY) = Y(w(X)) + w(VyX)
— X(@(Y)) - Y(0(X)) — w(VxY — Vy X)
= X(w(Y)) - Y(w(X)) — (X, Y]) = dw(X,Y).

Then we have the following result for the exterior derivative of FX.

Lemma 6.4.3. There is a constant C' depending only on M and the perturbation parameter n
such that for any solution (1, A) to the Seiberg- Witten equations we have

|dF {3 < C.
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Proof. Let V9 denote the Levi-Cevita connection. Then we have by the spinor connection
property and the Seiberg-Witten equation that
g+ __ A |¢|2 . 79
V FA —V(w@w_Tld)—’Lv N+
By lemma 6.4.2, the anti-symmetrization of the Levi-Civita connection applied to a 2-form is

precisely the exterior derivative of the 2-form, so by antisymmetrizing the equation above we
obtain

[

APy =V @y - =

) — idn.
Then we obtain
dF; = V() @+ 9 @ ¢ — Re(Vip, 1)id — idn-.

All terms on the right hand side are L?-bounded with bounds only depending on the geometry
of M and the perturbation parameter, so we obtain a bound C for ||dF4l%, O

Lemma 6.4.4. There is a constant C1 only depending on M and the perturbation parameter n
such that for any solution (¢, A) to the Seiberg- Witten equations we have

IEL 72 < O

Proof. Let m: LLQ(/\%_T*M) — H* be the orthogonal projection to the orthogonal complement
of the space of harmonic self-dual two forms. We may then write F{ = 7(F1) + w, with w
self-dual and harmonic. Then Hodge theory gives a constant C’ such that

lm(FD) 72 < ClAFL 17

We also have an orthogonal projection to self-dual harmonic two forms, so there is a constant
C” > 0 such that ||w|| 12 < C"||F{]||z2. Since we have an L?-bound on F and a L? bound on
dF:{ it follows that the asserted Cy > 0 exists. L]

Then we can combine these bounds with gauge fixing to obtain the following statement.

Proposition 6.4.5. Let o be a spin® structure and let Ag be a fixed C*° connection on the deter-
minant bundle det(o). Then there exists a constant K1 depending only on M, the perturbation
parameter n and Ay such that for any solution (¢, A) to the Seiberg- Witten equations we have
a connection A' = Ay + a gauge equivalent to A with d*a =0 and ||o||3 .. < K.

Proof. This follows from lemma 6.4.1 combined with the previous lemma. 0

6.4.3 (Sequential) compactness of the moduli space
The following theorem is the key to showing compactness of the moduli space.

Theorem 6.4.6. Suppose that (1, A) is a solution to the Seiberg- Witten equations and that we
have fixed gauge so that A = Ag+ o where Ag is a fited C* connection on the determinant line
bundle, with d*a = 0 and with the projection of o into the harmonic forms contained in a given
compact fundamental domain modulo the lattice of harmonic forms with periods in 4mwiZ.. For
every £ > 2 there is a constant C({), depending only on M, Ay, the perturbation parameter and
£ such that

e Zee + 972 < C0).

(Here the L%2-norm of the spinor is taken with respect to Va,)-
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Proof. We have proven that v is pointwise bounded and we have seen that « is L?? bounded.
We have V 41 = V4,9 + a1, so the L?2-bound on 1 together with the L2 bound on V4 yield
a LY bound on 1.

We will show that 1) is bounded in L32. By the Dirac equation we have

Do =—a- 9. (6.2)

Since a is L?»? bounded and 1 is C° bounded, it follows that Ip AW is L* bounded, so by
ellipticity of Ip A,> the projection to the orthogonal of ker (1D Ao) 18 L'* bounded. Since v is also
L? bounded, so is its projection to ker(/)4,). Since this is finite dimensional, all norms are
equivalent, and so the projection is also L'* bounded. So together these imply a L'** bound on
.

Then using lemma 6.1.4, we obtain an L3 bound on ) Ao, so arguing in the same way, we
obtain a L?? bound on 1. Then using lemma 6.1.3, we obtain a L%*2? bound on IDAO@Z) and so
once again we obtain a L3? bound on .

Now, from the curvature equation

¥

Fi=v®yp- Tid —iny (6.3)

and lemma 6.1.2 it follows that FX is also bouded in L*2. So by the gauge fixing lemma 6.4.1
a is L*? bounded. This was the initial step of obtaining a bound C(¢).

Now suppose by induction that we have for some ¢ > 3 bounds for the L*2-norms of a and
1. Then from equation 6.2 and lemma 6.1.2 it follows that there is a L%? bound on Ip A,% and
so there is a L*12 bound on ¢. Then from the curvature equation 6.3 it follows that there is
a L*2-bound on FX. So by the gauge fixing lemma 6.4.1, there is a L*t12 bound on a. The
result follows by induction. O

From this theorem we obtain sequential compactness of the moduli space.

Corollary 6.4.7. Let (¢, Ay) be any sequence of solutions to the Seiberg- Witten equations.
Then after passing to a subsequence, and applying L>? gauge transformations we can arrange
that the (Vn, An) are C™° objects and they converge in the C° topology to a limit (1, A) which
is also a solution to the Seiberg- Witten equations.

Proof. By Morrey’s theorem, theorem 4.2.9, we have compact embeddings L%? < C~3. By the
theorem we can gauge fix each (v, A,) with a L?>? gauge transformation to obtain a sequence
of (¢n, Ao + o) as in the theorem. For these ay, and v, we have L%? bounds only depending
on ¢, M, a choice of Ay and the perturbation parameter 1. We now apply a diagonal argument
to obtain a C™> convergent subsequence.

We inductively define subsequences (wﬁf),Ao + aq(f)) for all £ > 3. For £ = 3, we have a
compact embedding (¢, Ag+ ) € C°. Since we have an a priori L>? bound on 1, and «,, we
obtain a convergent subsequence (1!17(13), Ao—i—ag)). Now, suppose we have defined (1/)7@, Ag +oz$f )).
Then by the compact embedding LT12 < C*~2 and the L*t12 bound on the 1, and oy, we
have a convergent subsequence (¢£L€+1), Ay + a,(f +1)) of (w,(f), A + ag)).

Now, we define (pn, Bn) = (¢£n+3)7 Ao—l—ozg:”?’)). Then we have that (uy,, By,) is a subsequence
of (n, Ap) and so it is convergent for all C*. So it is a C> convergent sequence, say (in, By) —
(u, B). Since all (un, By,) solve the Seiberg-Witten equations, it follows that (i, B) is also a

solution to the Seiberg-Witten equations. O
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Corollary 6.4.8 (Compactness of the moduli space). The moduli space ﬂf;‘*‘l is compact.

Proof. Since Sobolev spaces are seperable, they are second countable. Therefore the notions of
compactness and sequential compactness coincide. The previous corollary precisely states that

the moduli space is sequentially compact. O
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Lecture 8

Seiberg-Witten equations on
cylinders

8.1 Applications

Before we actually start to study the Seiberg-Witten equations on cylinders, we will give the
proof for two theorems that require these kind of objects, where we black box the results from
the analysis of Seiberg-Witten equations on cylinders.

8.1.1 Vanishing for connected sums

Theorem 8.1.1. Let My, My be closed four-manifolds with b;(Ml), b; (M) > 0. Then My#M,
has vanishing Seiberg- Witten invariants

Proof. Let D1 C My and Dy C My be open discs, let N; := (M;\ D;)Ugs S% x [0, 00) and smooth
out the corner, such that N; gets a cylindrical end diffeomorphic to S3 x [1,00) . Equip N; with
a generic metric g; such that g;| S3x[1,00) = 953 + dt? . For every r > 1, pick a diffeomorphism
My#My = (N1 \ (5% % (r,00))) Ugsx 73 (N2 \ (8% X (1, 00))) . This process gives a family of metrics
gr on Mi# My such that g, is generic away from the cylindrical neck. Also pick a Spin®-structure
o on My#Ms and equip M7 and Ms with the respective Spin®-structure o; and o9, which are
canonically induced from o/, p, -

We will use the following black box: for » > 1 and generic n with supp(n) C M;\D1LUM>\D>,

My, n(0,%) = ‘%91,77IN1,#(N1701’ *) X M (N2, 02,%).

2777|N2 M

Here, 'ﬂgiﬂl\Ni#( [N

convergence to a suitable model at oo, modulo elements of the gauge group that are 1 at a

Nji, 04, %) is the moduli space of solutions to SW,  ~with suitable exponential

chosen basepoint. The residual S* action on ., (o, *) acts diagonally on the right hand side.
Let /%givn\Nivu(Ni’ 0;) = /%gm\zvi,u(Niv o, %)/St. Since we assumed My, Ms had positive by , the
same is true for N1, No, so a black box tells us the associated moduli spaces generically consist
of irreducible solutions. We see that, generically,

dim(‘ﬂgrﬂi(a)) = dim(ﬂgl,n\Nl ,M(va Ul)) + dim(ﬂQQJﬂNQ:/L(NQ? 02)) +1.

In particular, if dim (.4, (o)) = 0, one of the moduli spaces ./, N;, 0;) must be generi-

z,n\zvi,u(
cally empty, such that /,, , (o) is also generically empty for r big enough.

95
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In the other case, let 6y be a global angular form for the residual S' action on Mg, n(0,%),
11|y M(Nl’o-l’ *) and
(Na, 09, %) . In particular, we see 6y = %(pr’{% + prifa) + exact term . We see

and let 01,60, be global angular forms for the residual S!'-actions on M
M.

92777|N2 M

w®é@MM%MMW

=ﬁ%% (prif + prifa) A (pridfy + pridds)

(N1,01,%) XM, Na,02,%)

91NN M gzynlNQ,u(

where n = § dim(.4,, ,(o)) . Thus,

s ()

where 1 ¢ 2 indicates the same term but with 1 and 2 exchanged. Since (df)"~* is exact

01 A (d6y)* /

M

(N1,01,%) 9271 Ny o1t

(dh)" *+1 2],
(N2,02,%)

91:mI Ny 1

whenever n # k, we find

sw(o) =271 (/ﬂ

91:mINy ,u(

01 N (dgl)n + //% 0o N (ng)”) .

N1,01,%) Na,02,%)

gzmINQ,u(

Since 2n + 1 = dim(My, 41, (N1, 01, %)) + dim( My, . . (N2,02,%)) , we see that in order

to have sw(o) # 0, we must have that either 2n + 1 = dim(.# (N1,01,%)) or 2n+ 1 =

g1y 1
dim (g, |, (N2, 02,%)) . But then we have dim (4, ;.. ,(Ni,0i,%)) = 0 for the other one,
implying dim (4, . .(Ni;0:)) = —1, i.e. it’s generically empty. So in that case, we generically
have My, (o) = 0 as well, so sw(o) =0. O

If we combine this with Taubes’ non-vanishing result, we obtain

Corollary 8.1.2. Let M be a closed four-manifold admitting symplectic structures. Then M 1is
irreducible: it cannot be decomposed as M = Ny1# N with N1, No closed four-manifolds satisfying
by (N1),b3 (No) > 0. In particular, a connected sum of two closed symplectic four-manifolds is
never symplectic.

8.1.2 Thom conjecture

One invariant of four manifolds that feels rather untouchable is the minimal genus function:

Definition 8.1.3 (Minimal genus function). Let M be a closed four-manifold. The minimal
genus function g; : Ho(M;Z) \ 0 — Nj sends a homology class a to the minimal genus of a
closed embedded surface ¥ C M representing «.

While this is a rather strong invariant of four manifolds, it is not very computable. One can
make educated guesses, for instance, an application of the adjunction formula and Riemann-Roch
for curves gives

Theorem 8.1.4. Let M = CP? with the standard complex structure and standard generator H
of Hy(M;Z) . A holomorphic curve ¥ in M representing a class dH with d > 0 satisfies

(d—1)(d-2)

genus(X) = 5
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If d < 0, we can represent classes in dH using antiholomorphic curves (i.e. holomorphic
curves, but with the opposite orientation), such that we are lead to the following conjecture
attributed to Thom, which was proven by Kronheimer and Mrowka using Donaldson theory,
but for which we will sketch a proof using Seiberg-Witten theory:

Theorem 8.1.5 (Thom conjecture). The minimal genus function gep2 of CP? is

(ld] = 1)(|d[ = 2) )
2

gcp2(dH) = max(0, (8.1)

Proof. The case where |d| = 0, 1,2,3 follow from a classical result by Kervaire and Milnor that
gep2(]d]) > 1 whenever |d| > 2, so we will do the |d| > 3 case. Moreover, we only have to prove
it when d > 0, since that also implies the result for d < 0, so we may assume d > 3.

Suppose X is a genus g surface representing dH . Then ¥ is genus minimising if and only if
the proper transform % of ¥ in (CP2#d2(CP2 is  genus minimising in dH — Y, E; . Since we blew
up all self-intersections of ¥, we see that 5.8 = 0, so we can find a tubular neighbourhood
U~ xD?of $. Write N := U 2 % x S'. We can equip X with a constant curvature metric
go , such that the curvature sy satisfies

volgy (X)sg = 4m(2 — 2¢9(%))

by the Gauss-Bonnet theorem and we equip N with the product metric gy = go + d6?.
We can equip M := CP?#d?>CP? with a generic metric g; such that N has a tubular
neighbourhood Uy isometric to N x [—1,1] with the product metric g, + dt?>. We can "stretch

the neck" to find a family of metrics g, such that gulanvy = gmlanwy and (Un,gnluy) =
(N x [-n,n],gn + dt?).

Black box: if we pick n large enough, then (g,,0) will lie in the positive chamber corre-
sponding to the canonical Spin® structure oy corresponding to —K = 3H — >, E;. Moreover,
swt(og) = 1 since M is a Kahler surface, so we conclude that there are (o, g, 0)-monopoles
whenever n is big enough, so we can pick a monopole (A,,,1,) for each g, . Since the scalar cur-
vature of g,, is uniformly bounded, the key estimate implies that [|1,||cc < C for some constant
C independent of n.

Moreover, recall that solutions to the unperturbed Seiberg-Witten equations on a compact
manifold are stationary points of the energy functional

B(AW) = [ (Vavl + FFP + 510 + i)l

such that solutions to the unperturbed Seiberg-Witten equations corresponding to a Spin®-
structure o have energy

B(o) = —4r /M A(det o).

Thus, (A, thn) has energy 47%(d® —9) on M . Moreover, & (Un| vy » Anlanvy) is bounded from
below by [ M\Un ]¢n|*, so because s is uniformly bounded and |¢,| is uniformly bounded, we
conclude that

g(f1n|UNvf‘bTL‘UN) = E(O-O) - %(ATL|M\UN71!}71|M\UN) <C

for some constant C independent of n .
In total, we have found a sequence of monopoles (A4,,¥y), on N x [—n,n] with uniformly

~Y

bounded energy and uniformly bounded |4, /o . If we pick an isomorphism det(o0)|yx[—nn =
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[—n,n] x det(op)|n and a reference connection V such that on det(00)| N x[=n,n] » V=Vny+dt,
with V a connection on det(og)|n , we can always pick a gauge such that A, = ia,(t), where
an(t) is a real one-form on N x {t}, such that in this gauge, the pair (A,,,) defines a one-
parameter family of structures living on N .

Black box: since we are stretching the neck to infinity, we will actually find that this defines a
monopole (A, 1) on the three-manifold N corresponding to the Spin® structure og|y , which has

~Y

spinor bundle ST |y, where we note that Spin®(3) = U(2), so the fundamental representation
is on C2. For such objects, there is another curvature estimate that states

|42, < —2maxs,
so because the scalar curvature on ¥ is constant, we conclude
volg, (8)[¥][3 < 87(29(2) —2).
Black box: by analysis of the monopole equations on three-manifolds, we then conclude
volgo (2)]| Falloe < 27(29(%) - 2).
Now, if we let p: N — X denote the projection, we see

c1(S*|n) =prer(STg) = p*((dH — ZE N(BH =Y E;))=—p*(d(d—3)),
so in particular, since d > 3,

d(d—3) ‘/ 1 ( S+|g

)| <3 [P <20(5) -2,

In total, we see g(X) > (d(d —3) +2)/2, so

(d—1)(d—2)

9(2) > 5

(8.2)

In fact, similar techniques can be used to prove

Theorem 8.1.6 (Adjunction inequality). Let M be a closed four-manifold with by (M) > 1 and
let c € H?>(M;7Z) be a Seiberg-Witten basic class of M , i.e. sw(o.) # 0. Let ¥ C M be a closed
embedded surface of genus g > 1, such that -3 > 0, then

202> |cN[E)|+X-2. (8.3)

We conclude that if M is a symplectic four-manifold with b; > 1, then symplectic surfaces
>, C M with X-3 > 0 are genus minimising in their homology class. In fact, Morgan, Szab6 and
Taubes have shown that symplectic surfaces are also genus minimising whenever b = 1 (also
using cylindrical gluing techniques) and Osvath and Szab6 have proven that this also holds for
negative self-intersecting curves (using different techniques):

Theorem 8.1.7 (Symplectic Thom conjecture). Let M be a closed symplectic four-manifold and
let ¥ C M be a closed symplectic surface. Then gy ([X]) = genus(X), i.e., ¥ is genus-minimising
in its homology class.
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8.2 Seiberg-Witten on cylinders

8.2.1 Monopole-equations on 3-manifolds

In this section, we will study Spin®-structures on three-manifolds. Recall that any closed
oriented three-manifold M is parallelisable, such that (after picking a metric), Fr(TM) =
M x SO(3). Therefore, any closed orientable three-manifold admits a Spin-structure corre-
sponding to the double cover M x Spin(3) — M x SO(3), with spinor bundle M x C?. Using
that Spin(3) = SU(2), and the fact that SU(2) xz, U(1) = {e? Ale? € U(1), A € SU(2)}, we
see that Spin®(3) = U(2) . The fundamental representation of Spin®(3) is therefore on C2.

Proposition 8.2.1. Let M be a closed oriented three-manifold. Then Spin®-structures o on
M are in one-to-one correspondence with complex line bundles L — M . The spinor bundle
associated to o is S = (M x C?)® L.

Given a Spin‘-structure o on M with spinor bundle S, let o/ (.S) denote the space of spinorial
connections. We define the configuration space

C(M,o) = d(S) xT'(S), (8.4)
which, under a choice of reference connection By, is isomorphic to iQ! (M) x T'(S).

Definition 8.2.2 (Chern-Simons-Dirac functional). Let M be a closed oriented three-manifold
with Spin® structure o with Spinor bundle S and fix a reference connection By on S. The
Chern-Simons-Dirac functional is the map & : €(M, o) — R given by

L(B,0) =5 [ (B~ Bo) AT(Fa + F,) + 5 [ (Do, opvol. (55
Proposition 8.2.3. The stationary points of the & are solutions to the following equations
Dpo=0;
37 Te(Fp)) = ¢ ® ¢ — 510 (8.7)
Proof. Let (B, ¢), (b, f) € €(M, o) and compute

d d
— Z(B+1b tf) = —

+;/M<m3(¢+tf)+itb' (¢+tf)7¢+tf>vol>

1
(8 / Te(B + ith — Bo) A Tr(F + itdb + Fi, )
M

7 1
= Z/Mb/\Tr(FB+FBO) + Z/MT&«(B—BO) A db
+s [ tiv-s.00v0l+ [ Re((Bpo. £))vol.

The last term on the right-hand side only vanishes for every f if and only if 1) 5 = 0. Moreover,
integrating the second term by parts, we find the remaining equation

1
S [ ATH(ER) + (b-6.0) 0.
M
Note that if we pick a local orthonormal frame (¢1, ¢2) for S, we see

(b-0,0) =D (¢, 01)b - i, d)

i=1,2
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= (b i, (i, )0)

i=1,2

=2(y(b),¢® ¢).

Note that the factor % in the operator norm is conventional, to preserve norm under the Clifford
action. Moreover, because we use the complex linear Hodge *-operator and the curvatire is
imaginary, we have

/Mb ATe(Fg) = — /MbA@ __ /M<b, Tr(Fi3)vol,

so we conclude
| (.26 © 6 = 1(+Te(F)))ol = 0.
Now, b is a one-form, so y(b) is a traceless endomorphism of S, so we see that this vanishes for
each b € Q' (M;R) iff
(20 ® ¢ —y(*Tx(Fp)))o =0,

where (—)o indicates taking the traceless part. Since *Tr(Fp) is a one form, y(xTr(Fp)) is
traceless, so we get the second equation

T(FB) = (6@ ¢)o =60 6 — 3|6
0

Definition 8.2.4. A stationary point of & is called an unperturbed monopole. The equa-
tions in the previous Proposition are the unperturbed three-dimensional monopole equa-
tions.

Like in the four-dimensional case, we have some curvature estimates for solutions to the

monopole equations

Theorem 8.2.5. Let (M, g) be a closed Riemannian three-manifold with scalar curvature s and
let (B, ®) be a monopole for (M, g), then

6|2, < max(0, —2maxs).

The CSD-functional is not invariant under the action of the full gauge group. The gauge

group acts on the connection by u- B = B — v~ 'du. If we define o, := %u‘ldu, we find

Lemma 8.2.6. The CSD-functional transforms under the gauge group as
P(u(B, ) = L(B, o) + 27r2/ A 1 (det ). (8.8)
M

In particular, the CSD-functional is invariant under the identity component of the gauge
group.
The three-dimensional monopole equations are related to the Seiberg-Witten equations on

cylinders. If M is a three-manifold with Spin®-structure ¢ and spinor bundle S, we can equip
M x R with bundle S & S, and define v : CI(T'(M x R)) — End(S & S) by

waw—(?'j) (8.9)



8.2. SEIBERG-WITTEN ON CYLINDERS 61

(X)) ::( 0 _V(X)*> , (8.10)

where m: M x R — M is the projection.

Lemma 8.2.7. The above defines a Spin‘-structure n*c on M x R such that the decomposition
St @ S~ agrees with the decomposition S @ S .

We get

Theorem 8.2.8. Let (By, ¢1)icr C € (M, o) be a smooth one-parameter family of configurations.
Then the associated configuration

(By + dt, ¢;) € €(M x R, 7*0)

is a solution to the four-dimensional Seiberg- Witten equations if and only if (By, ¢)ier Solves
the downward gradient flow equations for the CSD-functional:

d

%(Bt,@) = —grad(Z)(Bt, ¢1) - (8.11)

Any configuration on M x R can be chosen to have temporal gauge, i.e. a gauge such
that (A,v) = (B + dt,¢;). On the one hand, a section v € I'(ST) defines a one-parameter
family of sections of S because ST = 7*S, on the other hand, fixing a reference connection Ag
in temporal gauge, we see that A = Ay + ib(t) + iadt, where b(t) is a one-parameter family of
one forms on M , and a is a real valued function. If we then pick a gauge u solving u = aw , we
see u - (A,1) is in temporal gauge. We see that the remaining gauge freedom is precisely the
gauge group of M .

The upshot is that if we find a solution to the Seiberg-Witten equations on a half-cylinder
M x [0,00), we can put it in temporal gauge, so the one-parameter family of configurations
on M will either diverge in some way as t — oo, or it will move towards a stationary point
of the CSD-functional. The invariant that captures this behaviour is precisely the energy of a
four-dimensional configuration:

Theorem 8.2.9. Let (B; + dt, ¢;) be a solution to the Seiberg-Witten equations on M x [0, 00)
(in temporal gauge). If the energy

BA0) = [ (VaUP FIELP 4 41 + dlylvol

is finite, then (By, ¢i) converges in any Sobolev norm to a monopole (B, ¢) on M .

8.2.2 A few words about asymptotically cylindrical manifolds

This section will be rather sketchy. For the applications we gave at the start of this chapter,
we always had manifolds that looked like M x RT away from a compact submanifold (with
boundary).

Definition 8.2.10. An asymptotically cylindrical manifold is a tuple (M, gar, N, gn, @),
where (M, g) is an open Riemannian n-manifold, (N, gx) is a closed Riemannian (n—1)-manifold,
and ¢ is an isometry ¢ : (M \ U, gm|anp) = (N x [0,00), gn + dt?), where U is a relatively
compact open submanifold of M. We call (N, gn) x [0,00) the cylindrical end of M, we call
N the asymptote of M and we call U the bulk of M .
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The "correct" function spaces to study on such manifolds are the spaces ijjp consisting of
functions that decay suitably quickly as t — co.

Definition 8.2.11. Let M be an asymptotically cylindrical manifold asymptotic to N. Let
t: M — R be a smooth function such that t|yx[0,0c) = To,00)- Let & € No, p € [1,00) and
@ >0, then
k,
L (M) := {f € Ll (M) = || fe" | < o0} (8.12)

Thus, Lﬁ’p (M) are those functions that converge to 0 faster than e~ . Likewise, one can
define

Definition 8.2.12. An asymptotically cylindrical vector bundle E — M is a vector bundle FE
over an asymptotically cylindrical manifold M asymptotic to N together with a vector bundle

F — N and choice of isomorphism E|yy[g,cc) — 7"F, where 7 : N x [0,00) — N is the
projection.

Likewise, one can define Lf;p (E) for asymptotically cylindrical vector bundles with asymp-
totically cylindrical metrics.

One can also define asymptotically cylindrical Spin®-structures, where we note that two iso-
morphic Spint-structures need not be isomorphic as asymptotically cylindrical Spin¢-structures,
since an isomorphism of Spin® structures over the cylindrical end need not extend to an actual
isomorphism of Spin®-structures.

Definition 8.2.13. Let M be an asymptotically cylindrical Spin® manifold with asymptotically
cylindrical Spin® structure o asymptotic to (N, o). Then we define

GpP(M,0) == {(A,v) € C(M,0): I(B,¢) € €"P(N,0|n)st. (A, ¥) — x(7*(B,¢)) € LI},

where 7 : N X [0,00) — N is the projection and x is a bump-function supported in N x [0, c0)
such that y =1 on N x [1,00).

Le., Cgﬁ’p (M, o) is the space of configurations that converge to a configuration on N faster
than a fixed exponential.

If welet n e Qi’C(M ) be a compactly supported perturbation, we can consider finite energy
@u(M, o)-solutions to the perturbed Seiberg-Witten equations on M with perturbation 7. Let
My, (M, o) denote the moduli space of such solutions modulo gauge-transformations u such
that u converges faster than e to something cylindrical. Since such solutions to the Seiberg-
Witten equations always converge to monopoles on the asymptote, we get a canonical map
Oco + My (M,0) — My, ,
on N . Likewise, let ./, ,(M, o, ) be the moduli space of irreducible solutions with a fixed value

the moduli space of monopoles on N modulo gauge transformations

at some point *, i.e. this has a residual S'-action.

The idea is now that if we have two asymptotically cylindrical manifolds M7, Ms with the
same asymptote N, we can glue X1 := M1\ N x[r+1,00) and X5 := My\ N X [r+1, 00) together
along a time reversing diffeomorphism N x (r,7+1) — N x (r,7+1), such that if we pick r large
enough and we pick a basepoint * somewhere in the neck, we can glue (A1, 1) € My, (M1, 01, %)
and (Ag,2) € My, ,,(Ma, 02, %) together whenever Ouo (A1, Y1) = 0s0 (A2, 12) , since they almost
agree on the neck. Morally, one would be led to a formula like

Mgy 40y (X1 UN (1) X2,01U 09, %) = sy, (M, 01, %) X, My o (Mz, 02, %) ,

where X1 Uy (rr41) X2 is a closed Riemannian Spin® four-manifold. However, such a formula
is not true in general.
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Appendix A

Proper group actions

Definition A.0.1. Let X be a topological space and let G be a topological group. Assume
that G ~ X continuously. We say that the action is proper if the shear map S: G x X —
X x X,(g,x) — (x,g - x) is proper.

We have the following alternative characterizations.

Proposition A.0.2. Let G ~ X be a continous group action. Assume that G and X are
metrizable. Then the following are equivalent:

1. The action is proper.

2. For all sequences (x,) C X and (gn) C G such that x,, — x and g, - T, — y, there is a

convergent subsequence of (gy).
3. For all compact K C X, the set Gx ={g€ G| g- KN K # 0} is compact.

Proof. Note that for metrizable space the notions of compactness and sequential compactness
coincide. Moreover, since subspaces are metrizable as well, this property is hereditary. We will
use this fact in the proof.

(1 = 2) Suppose that the action is proper. Let (z,) C X and (g,) C G be sequences such
that x, — X and g, -, — y. Then for all n we have S(gy, ~n) = (Tn, gn - Tn), S0 by assumption
S(gn, xn) — (z,y). So the set L = {S(gn,zn) | n € N} U{(z,y)} is compact. Since S is proper
by assumption, the set S71(L) C G x X is compact. So prs(S~H(L)) C G is compact and
(gn) C pre(S™H(L)). So by (sequential) compactness, (g,) has a convergent subsequence.

(2 = 3) Let K C X be compact. Let (g,) C Gx be a sequence. Then for each n € N we can
choose an x,, € K such that g, -z, € K. Then we can extract a subsequence of x, and g, which
we denote by the same symbol such that (z,) and (gy, - x,,) converge, using the compactness of
K. Then by 2 we have a convergent subsequence of g,. So Gk is sequentially compact, and so
also compact.

(3 = 1) We have to show that the shear map S: G x X — X x X is proper. Let K C X x X
be compact. Then K; = pr;(K) and Ky = pry(K) are compact, hence L = K; U K is compact.
Then L x L is also compact and K C L x L. We claim that S~(L x L) C G, x L.

Let (g,z) € S™Y(L x L). Then (z,g-2) € Lx L,sox € Landg-2 € LNg-L. So
g € Gr. By assumption G, is compact, so G, x L is compact. Finally, by continuity, S~ (K) C
S™Y(L x L) C G, x L is a closed subset. So S~!(K) is also compact. So S is proper. O
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We have used the following lemma in the proof.

Lemma A.0.3. Let X be a topological space. Let (x,,) C X be a sequence. Assume that x,, — x.
Then L = {x, | n € N} U{z} is compact.

Proof. Let U be an open cover of L. Then there is a Uy € U such that x € Uy. Since z,, — x,
there exists an N € N such that for n > N we have z,, € Uy. Now, for 0 < k < N — 1, we pick
Uk+1 € U such that x € Ugyy. Then {Up, Uy, ...,Un} is a finite subcover. ]

Lemma A.0.4. Let G ~ X be a continuous group action. Then the quotient map q: X — X/G

18 open.

Proof. Let U C X be open. Then

g HqU) =g U

geG
which is open. So by the quotient map property, ¢(U) is open. O

Lemma A.0.5. Let G ~ X be a proper group action. Let R C X x X be the equivalence
relation on X induced by the action. Then R is closed as a subset.

Proof. Let S: G x X — X x X be the shear map of the action. We claim that R = S(G x X),
which is then closed since the image of a proper map is closed. We have (z,y) € R iff x ~g y
iff there exists a g € G such that y = g - x iff there exists a g € G such that S(g,x) = (z,y) iff
(z,y) € S(G x X). So indeed R = S(G x X). O

Proposition A.0.6. Let G ~ X be a continuous proper group action. Assume that X and G
are Hausdorff. Then the quotient space X/G is Hausdorff.

Proof. Denote the quotient map by ¢: X — X/G. Let ¢(x),q(y) € X/G. Assume that ¢(z) #
q(y). Then (z,y) ¢ R. Since R is closed, there are open neighbourhoods U,V C X of = and y
respectively, such that U x VN R = (). Then ¢(U) and ¢(V') are open neighbourhoods of ¢(z)
and ¢(y) respectively. Suppose that ¢(z) € ¢(U) N q(V). Then there are g,h € G such that
g-z€Uand h-2€V,s0(g-2,h-2)€UxV and (g-2,h-2) € R, since g- z=gh™ - (h-2).
This is a contradiction, so ¢(U) N¢(V) = 0. So X/G is Hausdorff. O
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