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Lecture 2

Clifford algebras and spin groups

2.1 Clifford algebras

2.1.1 Basic definitions and properties

Definition 2.1.1. Let (V, ⟨·, ·⟩) be a Euclidean vector space. The Clifford algebra of V is
defined as

Cl(V ) := T (V )/I(V ),

where T (V ) :=
⊕

r≥0 V
⊗r is the tensor algebra of V and I(V ) is the two-sided ideal generated

by {v ⊗ v + ∥v∥2 : v ∈ V }.

Cl(V ) is a unital associative real algebra whose product we will denote by ab or a · b.
Remark 2.1.2. I(V ) is also generated by {v ⊗ w + w ⊗ v + 2⟨v, w⟩ : v, w ∈ V }.

Choosing an orthonormal basis (ei)i for V we can describe Cl(V ) as the algebra generated
by {ei}i subject to the relations

eiej =
{

−1, i = j,

−ejei, i ̸= j.

In particular, dim Cl(V ) = 2dimV .

Lemma 2.1.3. The map V → Cl(V ) given by the composition V ↪→ T (V ) → Cl(V ) is injective.

Proof. It is enough to prove that I(V ) ∩ V = 0. Let

a =
∑
i

bi ⊗ (vi ⊗ vi + ∥vi∥2) ⊗ ci ∈ I(V ),

where the sum is finite and bi, ci ∈ Cl(V ) are homogeneous. If a ∈ V , then necessarily∑
j

bj ⊗ vj ⊗ vj ⊗ cj = 0,

where j ranges along the indices such that |bj | + |cj | is maximal. Then it also follows that∑
j

bj∥vj∥2 ⊗ cj = 0.

We now proceed by induction to conclude that a = 0.
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2 LECTURE 2. CLIFFORD ALGEBRAS AND SPIN GROUPS

Proposition 2.1.4. Cl(V ) is, up to isomorphism, the unique unital associative real algebra with
an inclusion V ↪→ Cl(V ) satisfying the following universal property: any linear map f : V → A

to a unital associative real algebra A such that f(v)2 + ∥v∥2 = 0 extends uniquely to an algebra
morphism Cl(V ) → A.

Corollary 2.1.5. An isometry (V, ⟨·, ·⟩) → (W, ⟨·, ·⟩) induces a unique algebra morphism Cl(V ) →
Cl(W ). In particular, O(V ) ⊆ Aut(Cl(V )).

Cl(V ) is actually a Z2-graded algebra, or super algebra.

Definition 2.1.6. We denote by ϵ the algebra automorphism of Cl(V ) induced by the antipodal
map V → V sending v ∈ V to −v.

Lemma 2.1.7. We have that ϵ2 = 1, so ϵ induces a Z2-grading Cl(V ) = Cl0(V ) ⊕ Cl1(V ) with
respect to which Cl(V ) becomes a graded algebra.

Definition 2.1.8. We call Cl0(V ) the even part of Cl(V ) and Cl1(V ) the odd part.

Example 2.1.9. Let Cl(n) be the Clifford algebra of n-dimensional Euclidean space. Then

1. Cl(1) = R[x]/(x2 + 1) ∼= C.

2. Cl(2) is generated by x and y subject to x2 = y2 = −1 and xy = −yx, i.e., Cl(2) ∼= H. On
the other hand, Cl0(2) = R[xy]/((xy)2 − 1) ∼= C.

3. Cl(3) ∼= H ⊕ H (exercise).

Cl(V ) also comes equipped with a transposition operator.

Definition 2.1.10. We define the transposition map t : Cl(V ) → Cl(V ) as the induced map
on Cl(V ) by the transposition map on T (V ) given by

v1 ⊗ · · · ⊗ vk 7−→ vk ⊗ · · · ⊗ v1.

The transposition map satisfies the properties that one would expect: (at)t = a and (ab)t =
btat.

We now want to take a closer look at the relationship between Cl(V ) and ∧V . Observe that
dim Cl(V ) = dim ∧V , so that, abstractly, we have that Cl(V ) ∼= ∧V noncanonically as ungraded
vector spaces. We will see now that there is actually a canonical isomorphism of graded vector
spaces Cl(V ) ∼= ∧V .

Definition 2.1.11. A representation or Clifford module of Cl(V ) is a real vector space S
together with an algebra morphism γ : Cl(V ) → End(S), called the Clifford action, which we
will often write as γaψ or a · ψ, for a ∈ Cl(V ) and ψ ∈ S.

Example 2.1.12. 1. Cl(V ) is a Clifford module via left multiplication.

2. If S is a Clifford module with Clifford action γ, then S∗ is also a Clifford module with
Clifford action γ∗ given by (γ∗)a := (γat)∗.

Lemma 2.1.13. The map V → End(∧V ) sending v ∈ V to ψ 7→ v ∧ ψ − ivψ, where

iv(v1 ∧ · · · ∧ vk) :=
∑
i

(−1)i+1⟨v, vi⟩v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk,

induces a representation of Cl(V ) on ∧V .
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Proof. For v ∈ V and ψ ∈ ∧V ,

v · (v · ψ) = v · (v ∧ ψ − ivψ) = −iv(v ∧ ψ) − v ∧ ivψ = −∥v∥2ψ.

Definition 2.1.14. We define the symbol map σ : Cl(V ) → ∧V by σ(a) := a · 1, where a acts
on 1 ∈ R = ∧0V by the representation from Lemma 2.1.13.

In low degrees, σ looks like:

σ(1) = 1,
σ(v) = v,

σ(v1v2) = v1 ∧ v2 − ⟨v1, v2⟩,
σ(v1v2v3) = v1 ∧ v2 ∧ v3 − ⟨v1, v2⟩v3 + ⟨v1, v3⟩v2 − ⟨v2, v3⟩v1

Proposition 2.1.15. The symbol map is an isomorphism of graded vector spaces.

Proof. If (ei)i is an orthonormal basis for V , then

σ(ei1 . . . eik) = ei1 ∧ · · · ∧ eik , for i1 < · · · < ik,

so that σ sends a basis for Cl(V ) to a basis for ∧V .

Remark 2.1.16. The inverse of the symbol map q : ∧V → Cl(V ) is sometimes called the quan-
tization map.

Lastly, we will need at some point how Clifford algebras behave under direct sums.

Proposition 2.1.17. If V = W1 ⊕W2 is an orthogonal decomposition, then Cl(V ) ∼= Cl(W1) ⊗
Cl(W2) as graded algebras.

Proof. Consider the linear map f : V → Cl(W1)⊗Cl(W2) given by f(w1 +w2) := w1 ⊗1+1⊗w2.
Then

f(w1 + w2)f(w1 + w2) = (w1 ⊗ 1 + 1 ⊗ w2)2

= w2
1 ⊗ 1 + w1 ⊗ w2 − w1 ⊗ w2 + 1 ⊗ w2

2

= −∥w1 + w2∥2.

It lifts, then, to a linear map Cl(V ) → Cl(W1) ⊗ Cl(W2). One can see that this map is surjec-
tive by taking an orthonormal basis of V adapted to the decomposition W1 ⊕ W2. Since the
dimensions agree, it must be an isomorphism.

2.1.2 Chirality

Definition 2.1.18. Let vol ∈ detV be a volume element normalized such that ∥vol∥2 = 1.
Then we define the corresponding chirality element Γ := q(vol) ∈ Cl(V ).

Lemma 2.1.19. Γ2 = (−1)n(n+1)/2 and Γv = (−1)n−1vΓ, where n = dimV . In particular, Γ
is in the center of Cl(V ) if n is odd.
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Proof. Let (ei)i be an orthonormal basis for V . Then Γ = e1 . . . en, so

Γ2 = e1 . . . ene1 . . . en = (−1)n−1+n−2+···+1e2
1 . . . e

2
n = (−1)n(n+1)/2.

On the other hand, if v ̸= 0, then let e1 = v/∥v∥, and hence

vΓ = ∥v∥e1e1 . . . en = (−1)n−1∥v∥e1 . . . ene1 = (−1)n−1Γv.

Recall that given a volume element vol ∈ detV we can define its Hodge star operator
∗ : ∧kV → ∧n−kV , where n = dim V , by ∗w := iwvol, where we use the metric to identify
w with an element in ∧kV ∗. Alternatively, ∗w is the unique element in ∧n−kV such that
u ∧ ∗w = ⟨u,w⟩vol for all u ∈ ∧kV .

Proposition 2.1.20. Let vol ∈ detV be a normalized volume element. Then its chirality
element and its Hodge star are related by σ(aΓ) = ∗σ(ϵ(at)).

Proof. First of all, notice that if a, b ∈ Cl(V ), then σ(ab) = ab · 1 = a · (b · 1) = a · σ(b).
Applying this to b = Γ we get that σ(aΓ) = a · vol. Let (ei)i be an orthonormal basis such that
vol = e1 ∧ · · · ∧ en. Then

ei1 . . . eik · vol = −ei1 . . . eik−1 · ieik (e1 ∧ · · · ∧ en)

= ei1 . . . eik−2 · ieik−1
ieik (e1 ∧ · · · ∧ en)

= · · · = (−1)kiei1 . . . ieikvol = (−1)kieik∧···∧ei1 vol

= (−1)k ∗ (eik ∧ · · · ∧ ei1).

When working with the complexification VC := V ⊗RC we can further normalize our chirality
elements. We consider VC endowed with the extension of ⟨·, ·⟩ to VC by C-bilinearity.

Definition 2.1.21. We define Cl(V ) := Cl(VC). If dimV = 2n and Γ ∈ Cl(V ) is a chirality
element, we define the complex chirality element Γc := inΓ ∈ Cl(V ).

Remark 2.1.22. Cl(V ) ∼= Cl(V ) ⊗R C canonically.

Proposition 2.1.23. Let dimV = 2n. Then the complex chirality element satisfies Γ2
c = 1, so

it induces a decomposition Cl(V ) = Cl+(V ) ⊕Cl−(V ). Moreover, if n = 2, then the symbol map
induces an isomorphism

Cl0±(V ) ∼= C(1 ± Γc) ⊕ ∧2
±VC.

Proof. First, by Lemma 2.1.19, Γ2
c = i2nΓ2 = (−1)n(−1)n(2n+1) = 1. By Proposition 2.1.20 we

have that a ∈ Cl0±(V ) if and only if

±σ(a) = inσ(aΓ) = in ∗ σ(at) = in ∗ σ(a)t.

Hence, the symbol map identifies Cl0±(V ) with the space

{w ∈ ∧evenVC : in ∗ wt = ±w}.

If n = 2, then such a w ∈ ∧evenVC in this space can be decomposed as w = w0 + w2 + w4, for
wj ∈ ∧jV , and

in ∗ wt = −∗w0 + ∗w2 − ∗w4 = ±w0 ± w2 ± w4.

Hence, ∗w0 = ∓w4, ∗w2 = ±w2 and ∗w4 = ∓w0.
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2.2 Spin and spinc groups

2.2.1 Spin groups

Definition 2.2.1. We define the group of units of Cl(V ) as the group of invertible elements

Cl×(V ) := {a ∈ Cl(V ) : there is a−1 ∈ Cl(V ) with aa−1 = a−1a = 1}.

We define the adjoint action as the map Ad : Cl×(V ) → Aut(Cl(V )) given by

Ada b := ϵ(a)ba−1.

Remark 2.2.2. Cl(V ) has a unique smooth structure (the vector space smooth structure) making
the multiplication. Cl×(V ) is an open subspace thereof, so that Cl×(V ) becomes a Lie group.
With this structure, Ad : Cl×(V ) → Aut(Cl(V )) is a Lie group map.

The adjoint action by vectors in V has a familiar form.

Proposition 2.2.3. Let v ∈ V be nonzero. Then Adv V = V and Adv acts on V as the reflection
along the hyperplane v⊥, that is:

Adv w = w − 2⟨v, w⟩
∥v∥2 v, for w ∈ V .

Proof. Since v is nonzero, v−1 = −v/∥v∥2. Then

Adv w = −vwv−1 = w − 2⟨v, w⟩
∥v∥2 v.

Definition 2.2.4. We define the Clifford group of V as

Γ(V ) := {a ∈ Cl×(V ) : Ada V = V }.

Remark 2.2.5. Γ(V ) is a closed subgroup of Cl×(V ), so that it becomes an embedded Lie sub-
group of Cl×(V ) by Cartan’s closed subgroup theorem.

Proposition 2.2.6. The kernel of Ad : Γ(V ) → GL(V ) is R×.

Proof. Let a ∈ Γ(V ) with Ada = 1 and write a = a0 + a1, with a0 even and a1 odd. The fact
that Ada = 1 means that va0 + va1 = a0v − a1v for all v ∈ V . Let (ei)i be an orthonormal
basis for V . Then a0 and a1 are polynomials on (ei)i, which we can write as a0 = e1b1 + c0
and a1 = e1b0 + c1, for b1 and c1 odd polynomials on (ei)i>1 and b0 and c0 even polynomials on
(ei)i>1. Then

e1a = e1a0 + e1a1 = e2
1b1 + e1c0 + e2

1b0 + e1c1 = −b1 − b0 + e1c0 + e1c1

= a0e1 − a1e1 = e1b1e1 + c0e1 − e1b0e1 − c1e1 = −e2
1b1 + e1c0 − e2

1b0 + e1c1

= b1 + b0 + e1c0 + e1c1,

which implies that b0 = b1 = 0. Hence, a = c0 + c1 is a polynomial on (ei)i>1. By induction, we
see that actually a ∈ R, and since a ∈ Cl×(V ), then a ∈ R×.

Definition 2.2.7. We define the norm map N : Cl(V ) → Cl(V ) by N(a) := ϵ(at)a.
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Proposition 2.2.8. The restriction of the norm to Γ(V ) gives a Lie group morphism

N : Γ(V ) → R×.

Proof. Let a ∈ Γ(V ). Then for all v ∈ V we have that

Ada v = ϵ(a)va−1 = (Ada v)t = ϵ(a−t)vat,

so ϵ(at)av(ϵ(at)a)−1 = v, i.e., N(a) lies in the kernel of Ad. The same expression gives that
Adat = Ada−1 , so that at ∈ Γ(V ), and therefore N(a) ∈ Γ(V ), and by Proposition 2.2.6 we now
conclude that N(a) ∈ R×. On the other hand, if a, b ∈ Γ(V ), then

N(ab) = ϵ(btat)ab = ϵ(bt)N(a)b = N(a)N(b).

Corollary 2.2.9. The restriction of Ad to Γ(V ) lands in O(V ), i.e., Ad : Γ(V ) → O(V ).

Proof. Let a ∈ Γ(V ). First note that N(ϵ(a)) = N(a) and that v ∈ Γ(V ) for every nonzero
v ∈ V . Then

∥ Ada v∥2 = N(Ada v) = N(ϵ(a)va−1) = N(a)N(v)N(a−1) = N(v) = ∥v∥2.

Definition 2.2.10. We define the pin and spin groups, respectively, of V as

Pin(V ) := {a ∈ Γ(V ) : N(a) = 1},
Spin(V ) := Pin(V ) ∩ Cl0(V ).

Remark 2.2.11. Since Pin(V ) is the kernel of a Lie group map, it is itself an embedded Lie
subgroup of Γ(V ). Since Cl0(V ) is a closed subspace of Cl(V ), then Spin(V ) is an embedded
Lie subgroup of Pin(V ).

Theorem 2.2.12. There is a short exact sequence

1 −→ R× −→ Γ(V ) Ad−→ O(V ) −→ 1,

which restricts to

1 −→ Z2 −→ Pin(V ) Ad−→ O(V ) −→ 1,

1 −→ Z2 −→ Spin(V ) Ad−→ SO(V ) −→ 1.

In particular, Spin(V ) is the universal cover of SO(V ) if dimV ≥ 3.

Proof. Recall the Cartan–Dieudonné theorem: every element of O(V ) can be written as a com-
position of at most dimV reflections. Together with Proposition 2.2.3, this gives surjectivity of
Ad. That the kernel of Ad restricted to Γ(V ) is R× is exactly the content of Proposition 2.2.6.
Moreover, if a ∈ Pin(V ) is in the kernel of Ad, then a ∈ R×, and since N(a) = a2 = 1, then
a = ±1.

Finally, the long exact sequence on homotopy groups gives that the index of π1Spin(V ) in
π1SO(V ) is 2. Since π1SO(V ) = Z2 if dimV ≥ 3, then π1Spin(V ) = 1 in this case.

Corollary 2.2.13. We have that

Γ(V ) = {v1 . . . vr ∈ Cl×(V ) : vi ∈ V, ∥vi∥2 ̸= 0, r ≥ 0},
Pin(V ) = {v1 . . . vr ∈ Cl×(V ) : vi ∈ V, ∥vi∥2 = 1, r ≥ 0}.
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Proof. Clearly v1 . . . vr ∈ Γ(V ) if ∥vi∥2 ̸= 0. To prove the converse, let a ∈ Γ(V ). Then Ada is
a composition of at most dim V reflections, say along the nonzero vectors v1, . . . , vr ∈ V . Then
Ada = Adv1...vr , so by Theorem 2.2.12 we have that a = λv1 . . . vr, for some λ ∈ R×. A similar
argument gives the result for Pin(V ) as well.

Corollary 2.2.14. The dimension of Spin(V ) as a Lie group is 1
2 dimV (dimV − 1), and its

Lie algebra is
so(V ) = {A ∈ gl(V ) : ⟨A·, ·⟩ + ⟨·, A·⟩ = 0}.

2.2.2 Spinc groups

The same proofs as in Theorem 2.2.12 and Proposition 2.2.8 give the short exact sequence

1 −→ C× −→ Γ(VC) Ad−→ O(VC) −→ 1. (2.1)

and that N : Γ(VC) → C× is a Lie group morphism.

Definition 2.2.15. We define the adjoint map ∗ : Cl(V ) → Cl(V ) by a∗ := at. We also define
the normc map N c : Cl(V ) → Cl(V ) as N c(a) := ϵ(a∗)a.

The adjoint map satisfies, as expected, (a∗)∗ = a, (ab)∗ = b∗a∗ and (λa)∗ = λa∗ for λ ∈ C.
Notice as well that N c : Γ(VC) → Γ(VC) is a Lie group map, which we do not know to necessarily
land in C×.

Lemma 2.2.16. An element a ∈ Γ(VC) satisfies Ada v = Ada v for all v ∈ VC if and only if
N c(a) ∈ R×.

Proof. Ada v = Ada v if and only if (Ada v)∗ = Ada v∗, which is equivalent to ϵ(a∗)a ∈ C× by
(2.1). In such case, we have that

ϵ(a∗)a = (ϵ(a∗)a)∗ = ϵ(a∗)a,

so that actually N c(a) ∈ R×.

Definition 2.2.17. We define the Cliffordc, pinc and spinc groups as

Γc(V ) := {a ∈ Γ(VC) : N c(a) ∈ R×},
Pinc(V ) := {a ∈ Γc(V ) : N c(a) = 1},

Spinc(V ) := Pinc(V ) ∩ Cl0(V ).

Remark 2.2.18. Since R× is a closed Lie subgroup of Γ(VC), then Γc(V ) is also a closed Lie
subgroup of Γ(VC). Then N c : Γc(V ) → R× is a Lie group map, so that Pinc(V ) becomes a
closed Lie subgroup of Γc(V ), and hence Spinc(V ) a closed Lie subgroup of Pinc(V ).

Theorem 2.2.19. There is a short exact sequence

1 −→ C× −→ Γc(V ) Ad−→ O(V ) −→ 1,

which restricts to

1 −→ U(1) −→ Pinc(V ) Ad−→ O(V ) −→ 1,
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1 −→ U(1) −→ Spinc(V ) Ad−→ SO(V ) −→ 1.

Moreover, there is also a short exact sequence

1 −→ Z2 −→ Γc(V ) Ad ×N−→ O(V ) × C× −→ 1,

which restricts to

1 −→ Z2 −→ Pinc(V ) Ad ×N−→ O(V ) × U(1) −→ 1,

1 −→ Z2 −→ Spinc(V ) Ad ×N−→ SO(V ) × U(1) −→ 1.

Proof. The first three are clear. The second one follows from the fact that if (Ada, N(a)) = (1, 1),
then a ∈ C× and a2 = 1, so a = ±1. For the last two, notice that if a ∈ Pinc(V ), then
N c(a) = ϵ(a∗)a = ϵ(at)a = 1, so that N(a) = ϵ(at)a = a−1a ∈ C×, and

N(a)N(a) = a−1aa−1a = 1,

so N(a) ∈ U(1).

Corollary 2.2.20. We have that

Γc(V ) = {v1 . . . vr ∈ Cl×(V ) : vi ∈ VC, ⟨vi, vi⟩ ̸= 0, r ≥ 0},
Pinc(V ) = {v1 . . . vr ∈ Cl×(V ) : vi ∈ VC, ⟨vi, vi⟩ ∈ U(1), r ≥ 0}.

Moreover, the group morphisms

Γ(V ) × C× −→ Γc(V ),
Pin(V ) × U(1) −→ Pinc(V )

Spin(V ) × U(1) −→ Spinc(V )

given by (a, z) 7→ az induce group isomorphisms

Γc(V ) ∼= Γ(V ) ×R× C×,

Pinc(V ) ∼= Pin(V ) ×Z2 U(1),
Spinc(V ) ∼= Spin(V ) ×Z2 U(1).

Proof. The claims for Γc(V ) and Pinc(V ) are clear by Theorem 2.2.19.
If a ∈ Γ(V ) and z ∈ C× are such that az = 1, then a|z|2 = z, and since a is real, we get

that z ∈ C× ∩ R = R×. On the other hand, if a ∈ Γc(V ), then there are vectors vi ∈ V with
∥vi∥2 ̸= 0 such that Ada = Adv1...vr . Theorem 2.2.19 now implies that there is z ∈ C× such that
a = zv1 . . . vr. Similar reasonings apply to Pinc(V ) and Spinc(V ).
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2.3 Spin representations

Let dimV = 2n. We will be concerned with complex, and even unitary, spin representations.

Definition 2.3.1. A Clifford module S with action γ : Cl(V ) → End(S) is unitary if S carries
a Hermitian metric such that γϵ(a∗) = γ∗

a.

Equivalently, a representation of Cl(V ) is unitary if and only if every real vector v ∈ V ⊆ VC
acts as a skew-self-adjoint operator.

Definition 2.3.2. We define the trace on Cl(V ) as the linear map tr : Cl(V ) → C given by
tr(a) := σ(a)0, where 0 denotes de degree 0 part.

Lemma 2.3.3. The trace satisfies the following properties:

tr(ab) = tr(ba), tr(a∗) = tr(a), tr(1) = 1.

Example 2.3.4. 1. Let h be the Hermitian metric on VC induced by ⟨·, ·⟩, given by h(v, w) :=
⟨v, w⟩, which in turn induces a Hermitian metric on ∧VC. Then the representation Cl(V ) →
End(∧VC) is unitary.

2. Cl(V ) itself carries a Hermitian metric, given by h(a, b) := tr(ϵ(a∗)b). Then the action
of Cl(V ) on itself by left multiplication becomes a unitary action. Moreover, with this
Hermitian metric the symbol map σ : Cl(V ) → ∧VC becomes an isometry:

∥σ(a)∥2
h = h(a · 1, a · 1) = h(1, ϵ(a∗)a · 1) = tr(ϵ(a∗)a).

Lemma 2.3.5. (VC, ⟨·, ·⟩) admits Lagrangian subspaces. If L is a Lagrangian subspace, then it
always admits a Lagrangian complement L′ ∼= L∗ inducing an isometry VC ∼= L⊕ L∗, where the
pairing on L⊕ L∗ is given by

⟨v + ξ, w + η⟩ = 1
2(ξ(w) + η(v)), for v + ξ, w + η ∈ L⊕ L∗.

Proof. Let (ej)j be an orthonormal basis for V and let L := spanC{ej + ien+j}nj=1. Then
dimC L = n = 1

2 dimC VC and L is isotropic:

⟨ej + ien+j , ek + ien+k⟩ = δjk − δjk = 0.

Let L be now any Lagrangian and let W be any complement to it. Then from VC = L⊕W

and L ∩W = 0 we get that 0 = L ∩W⊥ and L⊕W⊥ = VC. Let P : W → L be the projection
of W to L according to the decomposition VC = L⊕W⊥. Let L′ := {w− 1

2Pw : w ∈ W}. Since
L′ is the graph of a linear map W → L, it is also a complement for L. Moreover, it is isotropic:

⟨w − 1
2Pw,w − 1

2Pw⟩ = ⟨w,w − Pw⟩ + 1
4⟨Pw,Pw⟩ = 0,

since w − Pw ∈ W⊥ and Pw ∈ L. Hence, L′ is a Lagrangian complement to L. Finally,
L′ = (L′)⊥ ∼= (L′)◦ ∼= L∗.
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Proposition 2.3.6. Let L ⊆ VC be a Lagrangian and identify VC ∼= L ⊕ L∗. When endowed
with the inherited Hermitian metric from VC, the space ∧L∗ is a unitary Clifford module with
Clifford action

(v + ξ) · ψ := ξ ∧ ψ − ivψ, for v + ξ ∈ L⊕ L∗ and ψ ∈ ∧L∗,

whose dual Clifford module is ∧L with Clifford action

(v + ξ) · w := v ∧ w − iξw, for v + ξ ∈ L⊕ L∗ and w ∈ ∧L.

Proof. It is indeed a Clifford module: if v + ξ ∈ L⊕ L∗ and ψ ∈ ∧L∗, then

(v + ξ)2 · ψ = (v + ξ) · (ξ ∧ ψ − ivψ) = −iv(ξ ∧ ψ) − ξ ∧ ivψ = −⟨v + ξ, v + ξ⟩ψ.

To see that it is unitary, first notice that, via the identification L∗ ∼= L, conjugation in
L ⊕ L∗ can be written as v + ξ = ξ + v, with ξ ∈ L and v ∈ L∗. Let ψ = α1 ∧ · · · ∧ αk and
φ = β1 ∧ · · · ∧ βk+1, for αi, βi ∈ L∗. Then

h((v + ξ) · ψ,φ) = h(ξ ∧ α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk+1)

= det


h(ξ, β1) . . . h(ξ, βk+1)
h(α1, β1) . . . h(α1, βk+1)

...
...

h(αk, β1) . . . h(αk, βk+1)



=
∑
i

(−1)i+1h(ξ, βi) det


h(α1, β1) . . . ̂h(α1, βi) . . . h(α1, βk+1)

...
...

h(αk, β1) . . . ̂h(αk, βi) . . . h(αk, βk+1)


=
∑
i

(−1)i+1h(ξ, βi)h(ψ, β1 ∧ · · · ∧ β̂i ∧ · · · ∧ βk+1)

= h(ψ, iξφ) = h(ψ, (v + ξ) · φ).

That ∧L is a Clifford module is clear. It only remains to see that it is the Clifford dual
to ∧L∗. Consider the duality pairing (·, ·) : ∧L∗ × ∧L → C given by (ψ,w) := iwψ, then an
analogous computation to the previous one proves that

((v + ξ) · ψ,w) = (ψ, (v + ξ) · w) .

Since this duality pairing is non-degenerate, it establishes that the Clifford dual of ∧L∗ is indeed
∧L.

Definition 2.3.7. The Cl(V )-module SL := ∧L∗, for a Lagrangian L ⊆ VC, we call the spinor
module.

Theorem 2.3.8. The spinor module SL is irreducible and the Clifford action

Cl(V ) → End(SL)

is an isomorphism of graded algebras. It restricts to an isomorphism

Cl0(V ) → End(S0
L) ⊕ End(S1

L),

so that both S0
L and S1

L are irreducible unitary Cl0(V )-modules, which are moreover non-isomorphic.
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Proof. Note that the dimensions of Cl(L⊕ L∗) and End(∧L∗) agree, so to prove that Cl(V ) →
End(SL) is an isomorphism it suffices to check that End(∧L∗) is generated by operators of the
kind ξ ∧ and iv, for ξ ∈ L∗ and v ∈ L.

If dimL = 1, let v ∈ L be a generator for L and let ξ ∈ L∗ be such that ξ(v) = 1. Then
∧L∗ = R ⊕ Rξ and we can write the operators in matrix form

ξ ∧ =
(

0 0
1 0

)
, iv =

(
0 1
0 0

)
, iv ◦ (ξ ∧ ) =

(
1 0
0 0

)
.

Together with the identity matrix, these span End(∧L∗). For the general case, let (vi)i be a
basis for L with dual basis (ξi)i, and let Li := Rvi, so that L∗

i = Rξi. Then L⊕L∗ =
⊕

i Li⊕L∗
i

as quadratic vector spaces, so that, by the 1-dimensional case,

Cl(L⊕ L∗) ∼=
⊗
i

Cl(Li ⊕ L∗
i ) ∼=

⊗
i

End(∧L∗
i ) = End

(⊗
i

∧L∗
i

)
= End(∧L∗).

We conclude that indeed Cl(V ) → End(SL) is an isomorphism of algebras, which in particular
implies that the representation is irreducible.

Restricting to the even parts, it induces an isomorphism

Cl0(V ) → End(S0
L) ⊕ End(S1

L),

giving that both S0
L and S1

L are irreducible Cl0(V )-modules. To see that these are non-isomorphic,
taking (vi)i and (ξi)i dual bases for L and L∗, then consider the chirality element

Γ := (v1 − ξ1)(v1 + ξ1) . . . (vn − ξn)(vn + ξn)
= (1 + 2v1ξ

1) . . . (1 + 2vnξn)

in Cl(L⊕ L∗). Since, for any multiindex I,

(1 + 2vjξj) · ξI = ξI − 2ivj (ξj ∧ ξI) =
{

ξI , j ∈ I

−ξI , j /∈ I,

we see that Γ · ξI = (−1)n(−1)|ξI |ξI . Hence, Γ acts as (−1)n on S0
L and as −(−1)n on S1

L, so
they cannot be isomorphic.

Theorem 2.3.9. 1. There is a unique isomorphism class of ungraded irreducible Cl(V )-
modules, represented by SL.

2. There are two isomorphism classes of irreducible Cl0(V )-modules, represented by S0
L and

S1
L.

3. There are two isomorphism classes of graded irreducible Cl(V )-modules, represented by SL
and SL[1].

Proof. By Theorem 2.3.8, Cl(V ) is isomorphic, as an ordinary algebra, to a complex matrix
algebra, and these are known to have a unique irreducible representation. On the other hand,
Cl0(V ) is isomorphic, as an ordinary algebra, to a direct sum of two complex matrix algebras,
and again these are known to have two isomorphism classes of irreducible representations.
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As for the graded case, it all boils down to checking how many different Z2-gradings does an
ungraded spinor module S admit. We will see that any grading is given as the decomposition
into eigenspaces for γΓc , where Γc is the complex chirality element and γ : Cl(V ) → End(S) is
the Clifford action. Indeed, since Γcv = −vΓc for any v ∈ VC, then γv interchanges S0 and S1,
so this Z2-grading is compatible with the action. Conversely, if S = S0 ⊕S1 is a compatible Z2-
grading, since γv exchanges S0 and S1, for any v ̸= 0, then both have dimension 1

2 dimS. This
implies that the restriction of the action Cl0(V ) → End(S0)⊕End(S1) is also an isomorphism, so
that both S0 and S1 are irreducible Cl0(V )-modules. Since Γc lies in the center of Cl0(V ), then
by Schur’s lemma γΓc must act as a scalar on both S0 and S1, so these are its eigenspaces.

Definition 2.3.10. The (half-)spin representations are the representations of Spin(V ) in-
duced by the two irreducible Cl0(V )-modules, which we call S±. The induced representations
of Spinc(V ) are the (half-)spinc representations.

If V = R2n, then the spin and spinc representations are typically denoted by ∆±
2n.

Proposition 2.3.11. The spin and spinc representations S± are irreducible and non-isomorphic.

Proof. This follows immediately from Theorem 2.3.8 and from the fact that both Spin(V ) and
Spinc(V ) generate Cl0(V ) as a complex algebra.
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Lecture 4

Dirac operators and the
Seiberg–Witten equations

foThroughout this lecture, (M, g) will be an orientable riemannian manifold, whose Levi-Civita
connection we denote by ∇g. C∞(M) will always refer to complex-valued smooth maps on M ,
whereas C∞(M,R) will denote real-valued ones.

4.1 Dirac operators and spinor bundles

4.1.1 Dirac operators

Definition 4.1.1. A real (resp. complex) Dirac bundle over M is a pair (S, γ), where S → M

is a Euclidean (resp. Hermitian) vector bundle and γ : Cl(M, g) → End(S) (resp. γ : Cl(M, g) →
End(S)) is a morphism of algebra bundles such that γϵ(at) = γ∗

a (resp. γϵ(a∗) = γ∗
a). If S is Z2-

graded such that γ is a morphism of graded algebra bundles, then we say that the Dirac bundle
is graded. The action of γ we write as γaψ or a · ψ, for a ∈ Cl(M, g) and ψ ∈ S.

We would like to do differential geometry with these objects, so we would like to introduce
connections which are well suited for Dirac bundles.

Lemma 4.1.2. There is a unique connection ∇g on Cl(M, g) extending the Levi-Civita connec-
tion on M such that

∇g
X(ab) = (∇g

Xa)b+ a∇g
Xb.

Proof. ∇g induces a connection on the tensor algebra bundle T (M, g) compatible with the
algebra structure. To see that it induces one on Cl(M, g) it is enough to check that the ideal
bundle I(M, g) is parallel. If X,Y ∈ X(M), then

∇g
X(Y ⊗ Y + ∥Y ∥2

g) = ∇g
XY ⊗ Y + Y ⊗ ∇g

XY + 2⟨∇g
XY, Y ⟩ ∈ Γ(I(M, g)).

Definition 4.1.3. Let (S, γ) be a Dirac bundle. A Dirac connection on S is a metric con-
nection ∇ on S such that

∇X(a · ψ) = ∇g
Xa · ψ + a · ∇Xψ.

A triple (S, γ,∇) where ∇ is a Dirac connection for the Dirac bundle (S, γ) we call a Dirac
bundle with connection.

15
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Viewing γ as a section of Cl(M, g)∗ ⊗ End(S), the Dirac connection condition is equivalent
to the condition ∇γ = 0, where ∇ is the induced connection on Cl(M, g)∗ ⊗ End(S).

Lemma 4.1.4. If (S, γ) is a graded Dirac bundle and ∇ is a Dirac connection on S, then ∇
preserves the grading.

Proof. The grading decomposition on S is always given as the eigenbundles of a chirality element
in Cl(M, g), and chirality elements are always parallel, since Riemannian volume forms are Levi-
Civita parallel.

Example 4.1.5. 1. Cl(M, g) is a real Dirac bundle with connection when endowed with the
Levi-Civita connection and the metric ⟨a, b⟩ := tr(atb). Similarly, Cl(M, g) is a complex
Dirac bundle with the Hermitian metric h(a, b) := tr(a∗b).

2. Ω(M) is a real Dirac bundle with connection when endowed with the Levi-Civita con-
nection and the metric inherited from TM . Of course, Ω(M,C) is also a complex Dirac
bundle.

Definition 4.1.6. Let (S, γ,∇) be a Dirac bundle with connection. We define its Dirac oper-
ator /D : Γ(S) → Γ(S) as the composition

Γ(S) ∇−→ Γ(T ∗M ⊗ S) γ−→ Γ(S).

We can express it locally as
/Dψ =

∑
i

Ei · ∇Eiψ,

for any local orthonormal frame (Ei)i.

Example 4.1.7. Let α ∈ Ωk(M), then the Dirac operator on α can be computed as

/Dα =
∑
i

(Ei ∧ ∇Eiα− iEi∇Eiα) = (d+ d∗)α.

Observe that for a graded Dirac bundle S = S+ ⊕ S− the Dirac operator breaks into two
pieces /D± : Γ(S±) → Γ(S∓).

For the proof of the following proposition, recall that the divergence of a vector field X ∈
X(M) is defined as

divgX := tr(∇gX) =
∑
i

⟨∇g
Ei
X,Ei⟩ ∈ C∞(M,R).

It also satisfies LXvolg = (divgX)volg:

LXvolg = LX(E1 ∧ · · · ∧ En) = −
∑
i

⟨[X,Ei], Ei⟩volg

=
∑
i

⟨∇g
Ei
X − ∇g

XEi, Ei⟩volg = (divgX)volg.

Lastly, by Stokes’s theorem, if ω ∈ Ωn(M), then∫
M

LXω =
∫
M
diXω =

∫
∂M

iXω = 0.
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Proposition 4.1.8. On a compact manifold, the Dirac operator is formally self-adjoint.

Proof. Let ψ,φ ∈ Γ(S). Then

⟨ /Dψ,φ⟩2 =
∫
M

⟨ /Dψ,φ⟩volg =
∑
i

∫
M

⟨Ei · ∇Eiψ,φ⟩volg

= −
∑
i

∫
M

⟨∇Eiψ,Ei · φ⟩volg

= ⟨ψ, /Dφ⟩2 −
∑
i

(∫
M

LEi⟨ψ,Ei · φ⟩volg −
∫
M

⟨ψ,∇g
Ei
Ei · φ⟩volg

)
.

The result now follows from the following computation:

∑
i

∫
M

LEi⟨ψ,Ei · φ⟩volg =
∑
i

(∫
M

LEi(⟨ψ,Ei · φ⟩volg) −
∫
M

⟨ψ,Ei · φ⟩LEivolg
)

= −
∑
i

∫
M

⟨ψ,Ei · φ⟩(divg Ei)volg

= −
∑
i,j

∫
M

⟨ψ,Ei · φ⟩⟨∇g
Ej
Ei, Ej⟩volg

=
∑
i,j

∫
M

⟨ψ,Ei · φ⟩⟨Ei,∇g
Ej
Ej⟩volg

=
∑
j

∫
M

⟨ψ,∇g
Ej
Ej · φ⟩volg.

Let us now study the symbol of /D.

Definition 4.1.9. Let (E,∇) → M be a vector bundle with connection. Then the operator
∇∗ : Ω1(M,E) → Γ(E) is defined as

∇∗α := − trg(∇α), for α ∈ Ω1(M,E),

where trg : T ∗M ⊗ T ∗M ⊗ E → E is the trace in the first two components.

Explicitly, we can write it as

∇∗α = −
∑
i

∇Eiα(Ei) = −
∑
i

(∇Ei(α(Ei)) − α(∇g
Ei
Ei)).

If E is equipped with a metric with which ∇ is compatible, then ∇∗ is actually the formal adjoint
of ∇ : Γ(E) → Ω1(M,E).

Proposition 4.1.10. Let (S, γ,∇) be a Dirac bundle with connection. Then, if ξ ∈ T ∗M , ψ ∈ S

and α ∈ T ∗M ⊗ S,

σ1( /D)(ξ)ψ = −iξ · ψ,
σ1(∇)(ξ)ψ = −iξ ⊗ ψ,

σ1(∇∗)(ξ)α = iα(ξ).

In particular, σ2( /D2)(ξ) = σ2(∇∗∇)(ξ) = ∥ξ∥2.
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Proof. Let ξ = df for f ∈ C∞(M,R). Then

iσ1( /D)(ξ)ψ = /D(fψ) − f /Dψ = γ(df ⊗ ψ + f∇ψ) − fγ(∇ψ) = ξ · ψ,
iσ1(∇)(ξ)ψ = ∇(fψ) − f∇ψ = df ⊗ ψ = ξ ⊗ ψ,

iσ1(∇∗)(ξ)α = ∇∗(fα) − f∇∗α = − trg(df ⊗ α+ f∇α) + f trg(∇α)
= −α(df) = −α(ξ).

In particular:

σ2( /D2)(ξ)ψ = σ1( /D)(ξ)
(
σ1( /D)(ξ)ψ

)
= −ξ2 · ψ = ∥ξ∥2ψ,

σ2(∇∗∇)(ξ)ψ = σ1(∇∗)(ξ)
(
σ1(∇)(ξ)ψ

)
= (ξ ⊗ ψ)(ξ) = ∥ξ∥2ψ.

Hence, the difference R := /D
2 − ∇∗∇ is a first order differential operator. It is a key fact

that it is actually zeroth order, that is, a tensor.

Theorem 4.1.11 (Bochner formula). Let (S, γ,∇) be Dirac bundle with connection. Then

/D
2 = ∇∗∇ + R,

where R ∈ End(S) is given by

Rψ = 1
2
∑
i,j

Ei · Ej ·R∇(Ei, Ej)ψ.

Proof. First of all, note that ∇∗∇ψ = − trg(∇2ψ), where

∇2
X,Y ψ := ∇X∇Y ψ − ∇∇g

XY
ψ.

Notice as well that (∇2
X,Y − ∇2

Y,X)ψ = R∇(X,Y )ψ. We can now compute:

/D
2
ψ =

∑
i,j

Ei · ∇Ei(Ej · ∇Ejψ) =
∑
i,j

(
Ei · ∇g

Ei
Ej · ∇Ejψ + Ei · Ej · ∇Ei∇Ejψ

)
=
∑
i,j

Ei · Ej · ∇2
Ei,Ejψ +

∑
i,j

(
Ei · ∇g

Ei
Ej · ∇Ejψ + Ei · Ej · ∇∇g

Ei
Ejψ

)

= −
∑
i

∇2
Ei,Eiψ + 1

2
∑
i̸=j

Ei · Ej · (∇2
Ei,Ej − ∇2

Ej ,Ei)ψ

+
∑
i,j

(
Ei · ∇g

Ei
Ej · ∇Ejψ + Ei · Ej · ∇∇g

Ei
Ejψ

)

= ∇∗∇ψ + 1
2
∑
i,j

Ei · Ej ·R∇(Ei, Ej)ψ

+
∑
i,j

(
Ei · ∇g

Ei
Ej · ∇Ejψ + Ei · Ej · ∇∇g

Ei
Ejψ

)
.

The last sum, call it A, is actually zero:

A =
∑
i,j

(
Ei · ∇g

Ei
Ej · ψ + Ei · Ej · ∇∇g

Ei
Ejψ

)
=
∑
i,j,k

(
⟨∇g

Ei
Ej , Ek⟩Ei · Ek · ∇Ejψ + ⟨∇g

Ei
Ej , Ek⟩Ei · Ej · ∇Ekψ

)
=
∑
i,j,k

(⟨∇g
Ei
Ek, Ej⟩ + ⟨∇g

Ei
Ej , Ek⟩)Ei · Ej · ∇Ekψ = 0.

We would like to particularize now Bochner’s formula the special case of spinor bundles.
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4.1.2 Spinor bundles

Definition 4.1.12. A complex spinor bundle is a complex graded Dirac bundle (S, γ) such
that the Clifford action γ : Cl(M, g) → End(S) is an isomorphism of algebra bundles. A Dirac
connection for a spinor bundle will be called a spinorial connection. If S is a spinor bundle,
we denote by A(S) the space of spinorial connections on S.

Spinor bundles here will always be complex, so we will drop the adjective complex.

Lemma 4.1.13. If S is a spinor bundle, then A(S) is an affine space modeled on iΩ1(M).

Proof. Let ∇′ = ∇ + B, with ∇′,∇ ∈ A(S) and B ∈ Ω1(M,End(S)). Then for all X ∈ X(M)
and a ∈ Γ(Cl(M, g)), since both ∇ and ∇′ are compatible with γ:

∇Xγa = γ∇g
Xa

= ∇′
Xγa = ∇Xγa + [BX , γa],

so BX lies in the center of End(S) at each point, which means that actually B ∈ Ω1(M,C).
Moreover, since both ∇′ and ∇ are compatible with the Hermitian metric, we get that 0 =
B +B∗ = B +B, which means that B ∈ iΩ1(M).

We now want to see that A(S) is actually non-empty as well.

Lemma 4.1.14. Let S → M be a complex vector bundle, then every algebra derivation of
End(S) is inner. More concretely, if δ ∈ End(End(S)) is such that δ(AB) = (δA)B + AδB,
then there is C ∈ End(S) such that δ = [C, ·]. Moreover, if S is endowed with a Hermitian
metric and δ is such that δA∗ = (δA)∗, then there is C ∈ u(S) such that δ = [C, ·].

Proof. Let {ψi}i and {λi}i be collections in Γ(S) and Γ(S∗), respectively, such that
∑
i λ

i(ψi) = 1
(using, say, local frames and partitions of unity), and define

Cφ :=
∑
i

δ(φ⊗ λi)ψi.

Then

[C,A]φ = CAφ−ACφ

=
∑
i

(
δ(Aφ⊗ λi)ψi −Aδ(φ⊗ λi)ψi

)
=
∑
i

(
δ(A ◦ (φ⊗ λi))ψi −Aδ(φ⊗ λi)ψi

)
=
∑
i

(δA)(λi(ψi)φ) = (δA)φ.

If S comes with a Hermitian metric and δ is such that δA∗ = (δA)∗, then we have that

0 = δA∗ − (δA)∗ = [C,A∗] − [C,A]∗ = [C + C∗, A∗],

for all A ∈ End(S). Hence, C+C∗ lies in the center of End(S), so there is λ ∈ C∞(M) such that
C + C∗ = λ. Since C + C∗ is self-adjoint, we actually have that λ = λ, so that λ ∈ C∞(M,R).
Consider now Ĉ := C − λ

2 . Then δ = [C, ·] = [Ĉ, ·], and Ĉ + Ĉ∗ = C + C∗ − λ = 0.
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Lemma 4.1.15. Let S → M be a complex vector bundle, then every connection on End(S)
compatible with the algebra structure, in the sense that ∇X is an algebra derivation of End(S)
for all X ∈ X(M), comes from an connection on S. If moreover S is equipped with a Hermitian
metric and ∇ is unitary, in the sense that (∇XA)∗ = ∇X(A∗) for all A ∈ End(S), then it comes
from a unitary connection on S.

Proof. Let ∇ be a connection on End(S) compatible with the algebra structure, and let ∇0 be
any connection on S. Denote by ∇̂0 the connection on End(S) induced by ∇0, which is also
compatible with the algebra structure. Then ∇ = ∇̂0 + B, for B ∈ Ω1(M,End(End(S))), and
since both ∇ and ∇̂0 are compatible with the algebra structure, we have that

BX(AC) = (BXA)C +ABXC, for X ∈ TM and A,C ∈ End(S).

Hence, B actually takes values in the algebra derivations of End(S). By Lemma 4.1.14, then,
there is B̃ ∈ Ω1(M,End(S)) such that BX = [B̃X , ·]. Consider ∇̃ := ∇ + B̃, which induces ∇
on End(S).

If S comes with a Hermitian metric and ∇ is unitary, we can run the previous argument
with ∇0 a unitary connection on S. This gives that

(BXA)∗ = BXA
∗, for X ∈ TM and A ∈ End(S),

so that by Lemma 4.1.14 again we have that BX = [B̃X , ·] for B̃ ∈ Ω1(M,End(S)) such that
BX +B∗

X = 0. Then ∇̃ := ∇ + B̃ is a Hermitian metric on S inducing ∇ on End(S).

Proposition 4.1.16. Let S be a spinor bundle. Then A(S) is a non-empty affine space modeled
on iΩ1(M). Moreover, if ∇′,∇ ∈ A(S) with ∇′ = ∇ + iα, for α ∈ Ω1(M), then

/D
′
ψ = /Dψ + iα · ψ, for ψ ∈ Γ(S).

Proof. Let ∇0 be any unitary connection on S. Define δ ∈ Ω1(M,End(End(S))) by

δXγa := γ∇g
Xa

− ∇0
Xγa, for X ∈ TM .

One can easily check that δX is actually an algebra derivation of End(S). Moreover, it preserves
adjoints: if a ∈ Cl(M, g) then

δXγ
∗
a = δXγϵ(a∗) = γ∇g

X(ϵ(a∗)) − ∇0
Xγϵ(a∗)

= γϵ((∇g
Xa)∗) − ∇0

Xγ
∗
a

= (δXγa)∗.

By Lemma 4.1.14, there is B ∈ Ω1(M,End(S)) such that δX = [BX , ·] and BX + B∗
X = 0.

Consider now ∇ := ∇0 + B. It is clearly Hermitian. It is also compatible with the Clifford
action: if a ∈ Cl(M, g), then

∇Xγa = ∇0
Xγa + [BX , γa] = ∇0

Xγa + δXγa = γ∇g
Xa
.

Hence, ∇ ∈ A(S).
If ∇′ = ∇ + iα, with ∇′,∇ ∈ A(S) and α ∈ Ω1(M), then

/D
′
ψ = γ(∇′ψ) = γ(∇ψ + iα⊗ ψ) = /Dψ + iα · ψ.
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In what follows we will identify Cl(M, g) with Ω(M,C) via the symbol and quantization
maps and the metric without further mention. By this we mean that if ω ∈ Ω2(M,C) and
ψ ∈ Γ(S), then by ω · ψ we mean q(ω) · ψ, where q is the quantization map, and where ω is
considered as an element of X2(M,C) using the metric g. We will also make the identifications
∧2T ∗M ∼= ∧2TM ∼= so(TM), via g. From this perspective, if X,Y ∈ TM , then X∧Y ∈ so(TM)
is given by

(X ∧ Y )Z = ⟨X,Z⟩Y − ⟨Y, Z⟩X.

Notice that if A ∈ so(TM), then we can extend A to Cl(M, g), since A preserves the ideal
I(M, g):

A(X ⊗X + ∥X∥2) = AX ⊗X +X ⊗AX + 2⟨AX,X⟩ ∈ I(M, g),

since ⟨AX,X⟩ = 0.

Lemma 4.1.17. If X,Y ∈ TM , then (X ∧ Y )a = 1
2 [X ∧ Y, a], for all a ∈ Cl(M, g).

Proof. If Z ∈ TM , then

(X ∧ Y )Z = ⟨X,Z⟩Y − ⟨Y, Z⟩X

= 1
2(−XZY − ZXY +XY Z +XZY )

= 1
2[XY,Z] = 1

2[X ∧ Y, Z].

If now Zi ∈ TM , then

(X ∧ Y )Z1 . . . Zk =
∑
i

Z1 . . . Zi−1 · (X ∧ Y )Zi · Zi+1 . . . Zk

= 1
2
∑
i

Z1 . . . Zi−1[XY,Zi]Zi+1 . . . Zk

= 1
2(XY Z1 . . . Zk − Z1 . . . ZkXY )

= 1
2[XY,Z1 . . . Zk] = 1

2[X ∧ Y, Z1 . . . Zk].

Lemma 4.1.18. If (S = S+ ⊕ S−, γ) is a graded Dirac bundle, then γ : Cl(M, g) → End(S)
preserves traces, in the sense that tr(γa) = s tr(a), for a ∈ Cl(M, g) and where s = rkC S.
In particular, γ is an isometry, where the Hermitian product on End(S) is given by (A,B) =
1
s tr(A∗B).

In particular, if ω ∈ Ωk(M,C) and η ∈ Ωℓ(M,C), then

tr(γ∗
ωγη) =

{
0, k ̸= ℓ,

s⟨ω, η⟩, k = ℓ.

Proof. First of all, if a = 1, then tr(γ1) = s = s tr(1). If (ei)i is an orthonormal basis for TxM ,
then if k is odd, γei1 ...eik : S± → S∓, so tr(γei1 ...eik ) = 0. On the other hand, if k is even, then

tr(γei1 ...eik ) = tr(γei2 ...eikei1 ) = − tr(γei1 ...eik ),
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so tr(γei1 ...eik ) = 0 as well. On the other hand,

tr(ei1 . . . eik) = σ(ei1 . . . eik)0 = (ei1 ∧ · · · ∧ eik)0 = 0.

Hence, γ indeed preserves traces. This directly gives that γ is an isometry.
In particular, if ω ∈ Ωk(M,C) and η ∈ Ωℓ(M,C), then

tr(γ∗
ωγη) = s tr(ωtη) =

{
0, k ̸= ℓ,

s⟨ω, η⟩, k = ℓ.

Proposition 4.1.19. If S is a spinor bundle and ∇ ∈ A(S), then there is a purely imaginary
2-form F∇ ∈ iΩ2(M) such that

R∇(X,Y ) = 1
2γR

g(X,Y ) + 2
s
F∇(X,Y ), for X,Y ∈ TM ,

where s := rkC S. Explicitly, F∇ = 1
2 tr(R∇). If moreover S = S+ ⊕ S− is graded, then

F∇ = tr(R∇+) as well, where ∇+ is the restriction of ∇ to S+.

Proof. If a ∈ Cl(M, g), then

[R∇(X,Y ), γa] = [[∇X ,∇Y ] − ∇[X,Y ], γa]
= −[[∇Y , γa],∇X ] − [[γa,∇X ],∇Y ] − γ∇g

[X,Y ]a

= −[γ∇g
Y a
,∇X ] + [γ∇g

Xa
,∇Y ] − γ∇g

[X,Y ]a

= γRg(X,Y )a = 1
2[γRg(X,Y ), γa].

Since S is a spinor bundle, this means that R∇(X,Y ) − 1
2γRg(X,Y ) is in the center of End(S).

Hence, there is a two form F∇ ∈ Ω2(M,C) such that

R∇(X,Y ) = 1
2γR

g(X,Y ) + 2
s
F∇(X,Y ).

By Lemma 4.1.18, taking the trace of this equality gives that 2F∇ = tr(R∇), which is purely
imaginary, since ∇ is unitary.

Assume now that S = S+ ⊕ S−. If Z ∈ TM , then the previous computation gives that,
restricting to S+:

[R∇(X,Y ), γZ ] = R∇−(X,Y )γZ − γZR
∇+(X,Y ) = γRg(X,Y )Z ,

so that, again by Lemma 4.1.18,

0 = −s⟨Rg(X,Y )Z,Z⟩ = tr(γZ·Rg(X,Y )Z)

= tr(γZR∇−(X,Y )γZ + ∥Z∥2R∇+(X,Y ))

= ∥Z∥2
(
− tr(R∇−(X,Y )) + tr(R∇+(X,Y ))

)
.

Hence, tr(R∇) = tr(R∇+) + tr(R∇−) = 2 tr(R∇+).

Theorem 4.1.20 (Lichnerowicz formula). If S is a spinor bundle and ∇ ∈ A(S), then

/D
2 = ∇∗∇ + 1

4scalg + 2
s
γF∇ .
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Proof. We need only compute R from the Bochner formula (Theorem 4.1.11) in this case. Using
Proposition 4.1.19 and the algebraic Bianchi identity for Rg:

Rψ = 1
2
∑
j,k

Ej · Ek ·R∇(Ej , Ek)ψ

= 1
2
∑
j,k

Ej · Ek ·
(1

2R
g(Ej , Ek) · ψ + 2

s
F∇(Ej , Ek)ψ

)

= 1
8
∑
j,k,l,m

⟨Rg(Ej , Ek)El, Em⟩EjEkElEm · ψ + 2
s
F∇ · ψ

= 1
24

∑
j ̸=k ̸=l ̸=j,m

(
⟨Rg(Ej , Ek)El, Em⟩ + ⟨Rg(Ek, El)Ej , Em⟩

+ ⟨Rg(El, Ej)Ek, Em⟩
)
EjEkElEm · ψ

+ 1
8
∑
j,k,m

⟨Rg(Ej , Ek)Ej , Em⟩EkEm · ψ

− 1
8
∑
j,k,m

⟨Rg(Ej , Ek)Ek, Em⟩EjEm · ψ + 2
s
F∇ · ψ

= −1
4
∑
j,m

Ricg(Ej , Em)EjEm · ψ + 2
s
F∇ · ψ

= 1
4scalgψ + 2

s
F∇ · ψ.

4.2 The Seiberg–Witten equations

In this whole section (S = S+ + S−, γ) will always be a graded spinor bundle and M will be
connected, orientable and closed.

4.2.1 The equations

For every ψ ∈ Γ(S), we can consider the endomorphism ψ⊗ψ ∈ End(S), by using the Hermitian
metric on S, by which we mean

(ψ ⊗ ψ)φ := ⟨ψ,φ⟩ψ.

It is of course self-adjoint. Its trace is given by:

tr(ψ ⊗ ψ) =
∑
i

|⟨ψ,φi⟩|2 = ∥ψ∥2,

where (φi)i is any local orthonormal frame for S. Hence, ψ⊗ψ− 1
s∥ψ∥2 is a self-adjoint traceless

endomorphism of S, where s := rkC S.
From now on, M will be 4-dimensional, in which case S± become rank 2. In such case, if

ψ ∈ Γ(S+), then ψ ⊗ ψ − 1
2∥ψ∥2 is a self-adjoint traceless endomorphism of S+. Recall that in

4-dimensions we have

End(S+) ∼= Cl0+(M, g) ∼= C∞(M)(1 + Γc) ⊕ Ω2
+(M,C).
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Under such identifications, End0(S+) ∼= Ω2
+(M,C) (cf. Lemma 4.1.18), where End0(S+) are

traceless endormophisms. Hence, we can think of ψ ⊗ ψ − 1
2∥ψ∥2 as a self-dual complex 2-form

on M . Moreover, it is purely imaginary. Indeed, if ω ∈ Ω2(M,C) is such that γω is self-adjoint,
then

γω = γ∗
ω = −γω,

so ω = −ω.

Definition 4.2.1. The (perturbed) Seiberg–Witten equations for a pair (∇, ψ) ∈ A(S) ×
Γ(S+) and perturbation parameter η ∈ Ω2(M), with dη = 0, are

F∇
+ = ψ ⊗ ψ − 1

2∥ψ∥2 − iη+, (4.1)

/Dψ = 0. (4.2)

We define the configuration space C(S) := A(S) × Γ(S+), the target space Y(S) :=
iΩ2

+(M) × Γ(S−), the Seiberg–Witten map SWη : C(S) → Y(S) given by SWη(∇, ψ) :=
(F∇

+ − q(ψ) + iη, /Dψ), for q(ψ) := ψ ⊗ ψ − 1
2∥ψ∥2, the solution space Zη(S) := SW−1

η (0, 0) =
SW−1

0 (−iη+, 0), and the gauge group G(M) := C∞(M,U(1)).

Explicitly, (4.1) means that for all φ ∈ S,

F∇
+ · φ = ⟨ψ,φ⟩ψ − 1

2∥ψ∥2φ− iη+ · φ.

We now begin the study of the moduli space of solutions to the Seiberg–Witten equations.

Lemma 4.2.2. The maps

G(M) × C(S) −→ C(S)
(u,∇, ψ) 7−→ (∇ − u−1du, uψ)

and
G(M) ×Y(S) −→ Y(S)

(u, ω, φ) 7−→ (ω, uφ)
define left actions with respect to which SWη is equivariant.

Moreover, if (∇, ψ) ∈ C(S), then its stabilizer Stab(∇, ψ) ⊆ G(M) is either trivial, if ψ ̸= 0,
or U(1), if ψ = 0.

Proof. That the action on C(S) is indeed a left action follows easily from

(uv)−1d(uv) = v−1u−1(vdu+ udv) = u−1du+ v−1dv,

for u, v ∈ G(M). To see that SWη is equivariant, first notice that ∇ − u−1du = u∇u−1, so
R∇−u−1du = uR∇u−1, and hence F∇−u−1du = F∇. On the other hand, q(uψ) = q(ψ). Secondly,
by Proposition 4.1.16, if ∇′ = ∇ − u−1du, then

/D
′(uψ) = /D(uψ) − u−1du · (uψ) = u /Dψ.

Let now u ∈ Stab(∇, ψ). Then ∇ − u−1du = ∇ if and only if u is constant, i.e., u ∈ U(1).
But then uψ = ψ implies that u can only be non-trivial if ψ = 0.

Definition 4.2.3. We define the Seiberg–Witten moduli space as Mη(S) := Zη(S)/G(M).
A solution (∇, ψ) is called reducible if Stab(∇, ψ) = U(1) (equivalently, if ψ = 0) and

irreducible if Stab(∇, ψ) = 1 (equivalently, if ψ ̸= 0).
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4.2.2 Seiberg–Witten functional

Although the Seiberg–Witten equations cannot be the Euler–Lagrange equations for any func-
tional, since they are first-order equations, they actually do arise from a variational setting.

Definition 4.2.4. We define the Seiberg–Witten functional S : C(S) → R by

S(∇, ψ) :=
∫
M

(
∥∇ψ∥2 + ∥F∇

+ ∥2 + scalg

4 ∥ψ∥2 + 1
8∥ψ∥4

)
volg.

Lemma 4.2.5. The Euler–Lagrange equations for the Seiberg–Witten functional are

∇∗∇ψ = −1
4
(
scalg + ∥ψ∥2

)
ψ,

d∗F∇
+ = −1

2 Re⟨∇ψ,ψ⟩.

Proof. Let (∇, ψ) ∈ C(S). If φ ∈ Γ(S), then

d

dt

∣∣∣∣
t=0

S(∇, ψ + tφ) =
∫
M

(
2⟨∇φ,∇ψ⟩ + scalg

2 ⟨ψ,φ⟩ + 1
2⟨ψ,φ⟩∥ψ∥2

)
volg

= 2
∫
M

⟨∇∗∇ψ + 1
4(scalg + ∥ψ∥2)ψ,φ⟩volg,

and if α ∈ Ω1(M), then, using that F∇+itα = F∇ + i2tdα,

d

dt

∣∣∣∣
t=0

S(∇ + itα, ψ) =
∫
M

(
2 Re⟨∇ψ, iα⊗ ψ⟩ + 4⟨F∇

+ , idα⟩
)

volg

= 4
∫
M

⟨d∗F∇
+ + 1

2 Re⟨∇ψ,ψ⟩, iα⟩volg.

Proposition 4.2.6. The Seiberg–Witten functional can be expressed as

S(∇, ψ) =
∫
M

(
∥ /Dψ∥2 + ∥F∇

+ − q(ψ)∥2
)

volg. (4.3)

Hence, the lowest possible value of S is obtained precisely on Z(S).

Proof. Let Ŝ(∇, ψ) be the right-hand side of (4.3). First of all, note that

q(ψ)2 =
(
ψ ⊗ ψ − 1

2∥ψ∥2
)2

= 1
4∥ψ∥4.

Then, using Lemma 4.1.18, we find that

∥q(ψ)∥2 = ⟨q(ψ), q(ψ)⟩ = 1
4 tr(q(ψ)2) = 1

8∥ψ∥4,

⟨F∇
+ , q(ψ)⟩ = ⟨F∇, q(ψ)⟩ = 1

4 tr(γF∇q(ψ))

= 1
4
∑
i

⟨φi, F∇ · (⟨ψ,φi⟩ψ − 1
2∥ψ∥2φi)⟩

= 1
4⟨F∇ · ψ,ψ⟩ − 1

8∥ψ∥2 tr(γF∇)
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= 1
4⟨F∇ · ψ,ψ⟩.

Now, using that /D is formally self-adjoint and Lichnerowicz’s formula (Theorem 4.1.20), we
finally see that

Ŝ(∇, ψ) =
∫
M

(
⟨ /D2

ψ,ψ⟩ + ∥F∇
+ ∥2 + ∥q(ψ)∥2 − 2⟨F∇

+ , q(ψ)⟩
)

volg

=
∫
M

(
∥∇ψ∥2 + scalg

4 ∥ψ∥2 + 1
2⟨F∇ · ψ,ψ⟩ + ∥F∇

+ ∥2

+1
8∥ψ∥4 − 1

2⟨F∇ · ψ,ψ⟩
)

volg

= S(∇, ψ).

4.2.3 The functional set-up

Let ∇̂ ∈ A(S) be a spinorial connection, which we will take as a reference point in A(S). We
will denote by Γ0 and C∞

0 compactly supported sections and functions.

Definition 4.2.7. Let 1 ≤ p ≤ ∞. An Lp-section of S is a measurable map ψ : M → S such
that ψ(x) ∈ Sx for almost all x ∈ M and ∥ψ∥ ∈ Lp(M,R). We denote the space of Lp-sections
up to equality almost everywhere by Lp(S). For ψ ∈ Lp(S), we define its Lp-norm by

∥ψ∥p :=
(∫

M
∥ψ∥pvolg

)1/p

if p < ∞, and ∥ψ∥∞ := ess sup ∥ψ∥ if p = ∞.
If ψ ∈ L1(S), we say that ψ is k-times weakly differentiable if there is α ∈ L1(T ∗M⊗k⊗S)

such that ∫
M

⟨ψ, (∇̂k)∗β⟩volg =
∫
M

⟨α, β⟩volg, for all β ∈ Γ0(T ∗M⊗k ⊗ S),

where ∇̂k : Γ(S) → Γ(T ∗M⊗k ⊗ S) is the composition

Γ(S) ∇̂−→ Γ(T ∗M ⊗ S) ∇̂−→ . . .
∇̂−→ Γ(T ∗M⊗k ⊗ S).

In such case we say that α is the weak kth derivative of ψ, and we write ∇̂kψ := α.
We define the Sobolev space Lk,p(S) as the space of sections ψ ∈ Lp(S) such that ψ is

j-times weakly differentiable and ∇̂jψ ∈ Lp(T ∗M⊗j ⊗ S) for all 1 ≤ j ≤ k. If ψ ∈ Lk,p(S), we
define its Sobolev norm by

∥ψ∥k,p :=
k∑
j=0

∥∇̂jψ∥p.

Proposition 4.2.8. For all 1 ≤ p ≤ ∞ and k ∈ N, the Sobolev spaces (Lk,p(S), ∥ · ∥k,p) are
Banach spaces.

Theorem 4.2.9 (Sobolev embedding, Rellich–Kondrachov and Morrey). 1. If 1 ≤ p < ∞,
then Γ(S) is dense in Lk,p(S).
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2. If k, ℓ ∈ N are such that k ≥ ℓ and 1 ≤ p, q < ∞ are such that

1
p

− k

n
≤ 1
q

− ℓ

n
,

then Lk,p(S) embeds continuously into Lℓ,q(S), i.e., Lk,p(S) ⊆ Lℓ,q(S) and there is a
constant C > 0 such that

∥ψ∥k,p ≤ C∥ψ∥ℓ,q, for all ψ ∈ Lk,p(S).

If moreover
1
p

− k

n
<

1
q

− ℓ

n
,

then the embedding Lk,p(S) ⊆ Lℓ,q(S) is compact, i.e., any bounded sequence in Lk,p(S)
admits a subsequence convergent in Lℓ,q(S).

3. If k, ℓ ∈ N and 1 ≤ p < ∞ are such that

1
p

− k

n
< − ℓ

n
,

then Lk,p(S) embeds continuously and compactly into Γℓ(S), the space of Cℓ-sections of S.

We will use the Sobolev spaces to topologize the moduli space Mη(S).

Definition 4.2.10. We make the following definitions:

Ak,p(S) := {∇̂ + iα : α ∈ Lk,p(T ∗M)},
Ck,p(S) := Ak,p(S) × Lk,p(S+),
Yk,p(S) := Lk,p(i ∧2

+ T ∗M) ⊕ Lk,p(S−),
Gk,p(M) := {u ∈ Lk,p(M,C) : |u(x)| = 1, for all x ∈ M},

and for any N ∈ {A,C,Y,G}, we let Nk := Nk,2.

Lemma 4.2.11. For every k ≥ 1, the map q : Γ(S+) → iΩ2
+(M) extends to a smooth map

q : Lk+1,2(S+) → Lk,2(i ∧2
+ T ∗M).

Proof. Let ψ ∈ Lk+1,2(S+). We begin by proving that q(ψ) ∈ Lk,2(i ∧2
+ T ∗M). Firstly,∫

M
∥q(ψ)∥2volg = 1

8

∫
M

∥ψ∥4volg < ∞,

since Lk+1,2(S+) ⊆ L4(S+) by the Sobolev embedding, because

1
2 − k + 1

4 ≤ 0 < 1
4 .

Secondly, since q(ψ) = ψ ⊗ ψ − 1
2⟨ψ,ψ⟩, we see that

∇̂j(q(ψ)) =
j∑
ℓ=0

(
j

ℓ

)(
∇̂ℓψ ⊗ ∇̂j−ℓψ − 1

2⟨∇̂ℓψ, ∇̂j−ℓψ⟩
)
.
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Hence, there is a constant C > 0 such that

∥∇̂j(q(ψ))∥2 ≤ C
j∑

ℓ,m=0
∥∇̂ℓψ∥∥∇̂j−ℓψ∥∥∇̂mψ∥∥∇̂j−mψ∥.

Observe that for all ℓ = 0, . . . , k we have that

1
2 − k + 1 − ℓ

4 ≤ 1
4 ,

so ∇̂ℓψ ∈ Lk+1−ℓ,2(S+) ⊆ L4(S+). The Hölder inequality now gives that

∥∇̂j(q(ψ))∥2
2 ≤ C

j∑
ℓ,m=0

∥∇̂ℓψ∥4∥∇̂j−ℓψ∥4∥∇̂mψ∥4∥∇̂j−mψ∥4 < ∞,

finally establishing that q(ψ) ∈ Lk,2(i ∧2
+ T ∗M).

Observe now that
Dq(ψ)φ = φ⊗ ψ − ψ ⊗ φ− Re⟨φ,ψ⟩,

which is (real) linear on ψ. Hence, to see that q is smooth it suffices to check that Dq is
continuous. This follows from

∥(Dq(ψ + ξ) −Dq(ψ))φ∥ = ∥φ⊗ ξ + ξ ⊗ φ− Re⟨φ, ξ⟩∥ ≤ 3∥ξ∥∥φ∥.

Proposition 4.2.12. Let η ∈ Lk,2(∧2T ∗M), for k ≥ 1, be weakly closed (dη = 0 weakly), then
the Seiberg–Witten map extends to a smooth map SWη : Ck+1(S) → Yk(S).

Proof. Identifying Ak+1(S) ∼= Lk+1,2(iT ∗M) by taking ∇̂ as a reference point, we can write
SWη : iΩ1(M) × Γ(S+) → iΩ2

+(M) × Γ(S−) as

SWη(iα, ψ) = (2i(dα)+ − q(ψ) + iη+, /̂Dψ + iα · ψ).

Since both /̂D and d are first order differential operators, they extend to smooth maps between
Sobolev spaces of the correct regularity. The result now follows from Lemma 4.2.11

We finish by proving that Gk+2(M) is a Hilber–Lie group, for which we will need the following
result.

Theorem 4.2.13 (Sobolev multiplication). If k, ℓ ∈ N are such that k ≥ ℓ and 1 ≤ p, q < ∞
are such that

1
p

− k

n
< 0 and 1

p
− k

n
≤ 1
q

− ℓ

n
,

then the multiplication of functions extends to a continuous map

Lk,p(M,C) × Lℓ,q(M,C) → Lℓ,q(M,C).

Proposition 4.2.14. For every k ≥ 1, the group Gk+2(M) is a Hilbert–Lie group modeled on
Lk+2,2(M, iR), and the actions of Gk+2(M) on Ck+1(S) and Yk(S) are smooth.
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Proof. First notice that by Theorem 4.2.9 we have that Gk+2(M) ⊆ C0(M,C), since

1
2 − k + 2

4 ≤ −1
4 < 0.

We can consider, then, the compact-open topology on Gk+2(M).
We will now provide charts for Gk+2(M). Consider first

H := {u ∈ Gk+2(M) : u(M) ⊆ U(1) ∖ {−1}},

which is an open neighborhood of the identity. The charts will be given by the Cayley transform
as follows: consider the diffeomorphism T : C → C given by

T (z) = 1 − z

1 + z
.

It satisfies T = T−1 and provides a diffeomorphism iR → U(1) ∖ {−1}. Consider now the
chart around the identity T : H → Lk+2,2(M, iR) given by T (u) := T ◦ u, which is clearly a
homeomorphism. Around any point v ∈ Gk+2(M), we define a chart Tv : vH → Lk+2,2(M, iR)
by Tv(u) := T (v−1u). Its inverse is given by T−1

v (if) = vT (if), so the transition functions
Lk+2,2(M, iR) → Lk+2,2(M, iR) are given by

TuT
−1
v (if) = T (u−1vT (if)),

which is smooth because T is so and the multiplication as well, by Sobolev multiplication
(Theorem 4.2.13).

Finally, the multiplication in local charts Tu, Tv and Tw is expressed as

(if, ig) 7−→ T (w−1vT (if)uT (ig))

and inversion in local charts Tu and Tv as

if 7−→ T (v−1uT (if)),

and both are smooth.

Definition 4.2.15. We define Zk+1
η (S) as SW−1

η (0, 0), for SWη : Ck+1(S) → Yk(S), and
Mk+1

η (S) := Zk+1
η (S)/Gk+2(M).
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Lecture 5

Smooth solutions and dimension of
the moduli space

5.1 Elliptic operator theory

In the following, denote by K either R or C . Let E,F → M be K-vector bundles over a closed
manifold M . Then we get a Fréchet topology on Γ∞(E) and Γ∞(F ) .

Definition 5.1.1. An operator P from E to F is a continuous K-linear map P : Γ∞(E) →
Γ∞(F ) . The space of all operators from E to F is denoted Op(E,F ) .

P is called local if P preserves supports: for every u ∈ Γ∞(E) , supp(Pu) ⊆ supp(u) .

Remark 5.1.2. In the above definition, we assumed K-linearity. If we drop this condition, we
call P a nonlinear operator.

Local operators have the property that their behaviour is determined by how it looks in
charts: if P ∈ Op(E,F ) is local and U is an open subset, then for every u1, u2 ∈ Γ∞(E) such
that u1|U = u2|U , we have (Pu1)|U = (Pu2)|U , so P |U is a well defined operator. In particular,
if (U,φ) is a trivialising chart1 for E,F → M , we see that we get a well defined operator

Pφ := φ ◦ PU ◦ φ−1 : Γ∞(V × Kk) → Γ∞(V × Kl) .

Definition 5.1.3. Let P ∈ Op(E,F ) be local and let m ∈ N0 , then we say P is a differential
operator of order ≤ m if for every trivialising chart (U,φ) , Pφ : Γ∞(V × Kk) → Γ∞(V × Kl)
is a matrix of differential operators of order ≤ m, i.e.,

Pφ =


P11 . . . P1k

... . . . ...
Pl1 . . . Plk

 ,

where Pij : C∞(V ) → C∞(V ) is a (linear) differential operator of order ≤ m on V . We denote
the space of differential operators of order ≤ m from E to F by DOm(E,F ) .

The following is nontrivial:
1φ will simultaneously denote the maps φ : U → V ⊆ Rn , φ : E|U → V × Kk and φ : F |U → V × Kl .

31
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Theorem 5.1.4 (Peetre’s theorem). Every local operator on a compact manifold is a differential
operator of order ≤ m for some m ≥ 0 .

Now we turn to some examples:

Example 5.1.5. Let M = S1 and let E,F = M ×C . Then ∂θ is a differential operator of order
≤ 1 from E to F .

Define P : Γ∞(E) → Γ∞(F ) by

Pf(θ) :=
∫ θ

0
(f(θ′) − f)dθ′ ,

where f is the average value of f . Then P is not a local operator.

Example 5.1.6. Let E,F → M be K-vector bundles, then

DO0(E,F ) ∼= Γ∞(Hom(E,F )) .

If E,F ∼= M × K ,

DO1(E,F ) ∼= XK(M) ⊕ Γ∞(M × K) ,

where the first summand is the order 1 part and the second summand is the order 0 part.

In the above example, we see that DO1 splits into an order 0 and a part of pure order 1.
This is not true in general, we cannot split DOm into DOm−1 and a part of pure order m : the
Laplacian on R2 in Cartesian coordinates is

∆R2 = −∂2
x − ∂2

y .

If we transform to polar coordinates, we get

∆R2 = −∂2
r − 1

r2∂
2
θ − 1

r∂θ ,

so while it is of pure order 2 in Cartesian coordinates, it has an order 1 part in polar coordinates,
i.e., the notion of pure order is not coordinate invariant.

What is true, however, is that the part of pure order m is tensorial, so P ∈ DOm(E,F )
always defines a section Pm ∈ Γ∞(SymmTM ⊗ Hom(E,F )) .

Definition 5.1.7. Let E,F → M be C-vector bundles and let π : T ∗M → M be the real
cotangent bundle. The symbol map σm : DOm(E,F ) → Γ∞(Hom(π∗E, π∗F )) is defined by

σm(P ) := imPm ,

interpreted as a Hom(E,F )-valued homogeneous polynomial order m on T ∗M .

Remark 5.1.8. The above definition only makes sense for C-vector bundles because of the im in
the definition. If we want the same definition for R-vector bundles, we could define σm(P ) = Pk ,

but since the above definition works better for complex vector bundles, and since we will really
only complex vector bundles in the remainder, we will restrict to the case K = C from now on.

Example 5.1.9. The following are the symbols of some well-known differential operators:
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1. Let ∆Rn be the Laplacian on Rn . Then σ2(∆Rn) =
∑n
i=1(ξi)2 , where ξi denote the Carte-

sian coordinates on the fibres of T ∗Rn ∼= Rn(x1,...,xn) × Rn(ξ1,...,ξn) .

2. Let X ∈ XC(M) interpreted as a differential operator of order ≤ 1 from M ×C to M ×C .
Then σ1(X) = iX ∈ C∞

lin(T ∗M) .

3. Let ∇ : Γ∞(E) → Γ∞(T ∗MC ⊗ E) be a connection on a C-vector bundle E . Then ∇ ∈
DO1(E, T ∗MC ⊗ E) and

σ1(∇)(ξ) = iξ ⊗ − ∈ Hom(π∗E, π∗(T ∗MC ⊗ E)) .

4. By antisymmetrising the previous example, we obtain

σ1(d)(ξ) = iξ ∧ − ∈ Hom(π∗ΛkT ∗MC, π∗Λk+1T ∗MC) .

The following is not too difficult to prove:

Proposition 5.1.10. Let E1, E2, E3 → M be complex vector bundles and let P ∈ DOm(E1, E2)
and Q ∈ DOm′(E2, E3) for some m,m′ ∈ N0 .

1. If m ̸= 0 , σm(P )|0T∗M = 0 .

2. If σm(P ) ≡ 0 , then P ∈ DOm−1(E,F ) .

3. Q ◦ P ∈ DOm+m′ and σm+m′(Q ◦ P ) = σm′(Q) ◦ σm(P ) .

4. If M is Riemannian and E1, E2 are hermitian, the formal adjoint P ∗ : Γ∞(E2) → Γ∞(E1)
defined implicitly by∫

M
⟨Pu, v⟩F vol =

∫
M

⟨u, P ∗v⟩E vol ; u ∈ Γ∞
c (E1), v ∈ Γ∞(E2) ,

is well defined and satisfies P ∗ ∈ DOm(E2, E1) and σm(P ∗) = (σm(P ))∗ .

Definition 5.1.11. Let E,F → M be complex vector bundles and let P ∈ DOm(E,F ) . Then P
is elliptic if σm(P )(ξ) ∈ Hom(Eπ(ξ), Fπ(ξ)) is invertible whenever ξ ̸= 0 . Denote by DOell

m (E,F )
the space of all elliptic operators from E to F .

If E0, . . . , El → M are complex vector bundles and Pi ∈ DOmi(Ei, Ei+1) for i = 1, . . . , l − 1
are such that Pi ◦ Pi−1 = 0 for every i = 1, . . . , l − 1 , then the complex

Γ∞(E0) Γ∞(E1) . . . Γ∞(El−1)P0 P1 Pl−1

is elliptic if the associated symbol sequence

0 E0,π(ξ) E1,π(ξ) . . . El−1,π(ξ) 0
σm0 (P0)(ξ) σm1 (P1)(ξ) σml−1 (Pl−1)(ξ)

is exact whenever ξ ̸= 0 .

The following facts are fundamental facts for the analysis of differential operators. From
now on, for simplicity, we will implicitly assume M is compact, although sometimes one can get
away with picking a Riemannian metric on M and hermitian metrics on every relevant vector
bundle.
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Theorem 5.1.12. Let E,F → M be complex vector bundles and let P ∈ DOm(E,F ) . Then for
every k ∈ N0 and p ∈ [1,∞) , P extends canonically to a continuous linear map P : Lk+m,p(E) →
Lk,p(F ) .

Theorem 5.1.13. Let E,F → M be complex vector bundles and let P ∈ DOℓ
m(E,F ) . Then

there is an operator Q ∈ OP(F,E) such that for every k ∈ N0 and p ∈ [1,∞) , Q extends to a
continuous linear map Q : Lk,p(F ) → Lk+m,p(E) such that id −Q ◦P : Lk+m,p(E) → Lk+m,p(E)
lands in Lk+m+1,p(E) and id − P ◦Q : Lk,p(F ) → Lk,p(F ) lands in Lk+1,p(F ) .

Definition 5.1.14. The operator Q ∈ OP(E,F ) is called a weak-inverse to P .

Remark 5.1.15. An elliptic operator usually doesn’t have a unique weak inverse. In fact, a weak
inverse can always be chosen such that id − QP and id − PQ land in Γ∞ . Moreover, Q is not
local, so it is not a differential operator, it fits into the theory of pseudodifferential operators.

Example 5.1.16. Let M = S1 and E,F = M × C . Then the operator ∂θ is elliptic with weak
inverse

Q(f)(θ) =
∫ θ

0
(f(θ′) − f)dθ′ ,

where f is the average value of f .

From this point onwards, we need compactness everywhere, one can no longer get away with
picking metrics. One nice thing about elliptic operators (on compact manifolds) is that they are
Fredholm2.

Theorem 5.1.17. Let E,F → M be complex vector bundles and let P ∈ DOell
m (E,F ) . Then for

every k ∈ N0 and p ∈ [1,∞) , P : Lk+m,p(E) → Lk,p(F ) is a Fredholm operator.

Proof. Since P is elliptic, it has weak-inverse Q ∈ OP(F,E) . Then id−PQ : Lk,p(F ) → Lk,p(E)
lands in Lk+1,p(E) , but by Rellich-Kondrachov, the embedding Lk+1,p(E) ↪→ Lk,p(E) is compact,
so id − PQ : Lk,p(E) → Lk,p(E) is a compact operator. Likewise, id − QP : Lk+m,p(F ) →
Lk+m,p(F ) is compact. Thus, P is invertible up to a compact operator, so P is Fredholm.

Theorem 5.1.18. The Fredholm index3 of P ∈ DOell
m (E,F ) depends only on topological prop-

erties of σm(P ) . Moreover, the index of P is independent of k and p .

Remark 5.1.19. The above theorem is stated in rather vague terms. The precise statement here
is known as the Atiyah-Singer index theorem. This theorem also gives a precise formula for this
index in terms of a K-theory class associated to σM (P ) .

Example 5.1.20. The following are examples of symbols of certain elliptic operators

1. Let X ∈ XR(S1) be nonvanishing, and interpret X as an order ≤ 1 differential operator on
the trivial line bundle S1 × C . Then X is elliptic and it can be deformed into ∂θ through
elliptic operators, so index(X) = index(∂θ) = 0 , since

ker(∂θ) = coker(∂θ) = {constant functions} .
2Recall that a Fredholm operator is a linear operator with a finite dimensional kernel and cokernel.
3Recall that the Fredholm index is dim(ker(P )) − dim(coker(P ))
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2. The following can be computed using the full Atiyah-Singer index theorem: let (M4, s) be
a spinc manifold with spinor bundle S . Then

index( /DS) = c1(det(s))2 − σ(M)
8 ,

where σ(M) is the signature of M .

3. Let M be a Riemannian manifold, then d + d∗ : Ωeven(M) → Ωodd(M) is a Fredholm
operator with index(d+ d∗) = χ(M) , which is a consequence of the Hodge decomposition
theorem.

Another nice thing about elliptic operators is that they behave extremely well with respect
to regularity:

Theorem 5.1.21 (Elliptic regularity). Let P ∈ DOell
m (E,F ) , u ∈ Lm,p(E) such that Pu ∈

Lk,p(F ) , then u ∈ Lk+m,p(E) .

Proof. Let Q be a weak inverse to P . Since Pu ∈ Lk,p(F ) , we see QPu ∈ Lk+m,p(E) . We
also know u − QPu ∈ Lm+1,p(E) , so if k ≥ 1 , we conclude u ∈ Lm+1,p(E) , but then u −
QPu ∈ Lm+2,p(E) , so if k ≥ 2 , we conclude u ∈ Lm+2,p(E) . Iterating this k times, we find
u ∈ Lm+k,p(E) .

Remark 5.1.22. The above proof technique is known as bootstrapping: one cannot pull themself
up by their own bootstraps, but a solution to an elliptic equation can pull its own regularity up
by using its own regularity.

Corollary 5.1.23. Let m ≥ 1 , P ∈ DOl
m(E,E) and let u ∈ Lm,p(E) be an eigenfunction of P .

Then u is smooth.

Proof. Let λ ∈ C be the corresponding eigenvalue of u . Then the operator P −λid is elliptic, as
its degree m part agrees with the degree m part of P , so σm(P−λid) = σm(P ) . But Pu−λu = 0 ,
and 0 is smooth, so u is Lk,p for any k , so by Morrey’s theorem, u is smooth.

5.2 Applications to the Seiberg-Witten moduli space

For this section, we let (M4, s) be a spinc manifold with spinor bundle S and we pick a smooth
reference connection ∇̂ on det(s) .

5.2.1 Smoothness of solutions

Theorem 5.2.1. Let η ∈ Ω2
+(M) and (iα, ψ) ∈ Z2

η (S) . Then there is a u ∈ G3(M) such that
u · (iα, ψ) is smooth. I.e., every solution to the Seiberg-Witten equations with regularity L2,2 can
be gauge-transformed into a smooth solution.

Proof. Using the Hodge decomposition theorem, we write iα = iα0 + idf + id∗β , where α0 is
harmonic, f ∈ L3,2(M) and β ∈ L3,2(Λ2T ∗M) . Pick u = eif ∈ G3 , then u · (iα) = (iα0 +
id∗β, eifψ) =: (iα̃, ψ̃) .

Now we will use the Seiberg-Witten equations to bootstrap the regularity of (iα̃, ψ̃) then tell
us

/̂Dψ̃ = −α̃ · ψ̃
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2id+α̃ = q(ψ̃) − iη − F+
∇̂ .

Since α̃, ψ̃ have regularity L2,2 , the Sobolev embedding theorem imply they are Lp for any
p ∈ [1,∞) , so the Hölder inequality tells us iα̃ · ψ̃ ∈ Lp for any p . Thus, the first equation
implies /̂Dψ̃ is Lp , so ellipticity of the Dirac operator and the elliptic regularity theorem, we
conclude ψ̃ is L1,p , so the Hölder inequality tells us q(ψ̃) is also L1,p , so d+α̃ is also L1,p .

Now, d+ +d∗ : Ω1 → Ω2
+ ⊕Ω0 is an elliptic operator4, and α̃ is coclosed, so d+α = (d+ +d∗)α̃ ,

so elliptic regularity implies α̃ is L2,p . Now we keep bootstrapping to find (iα̃, ψ̃) is smooth,
completing the proof.

Corollary 5.2.2. Let k, l ∈ N , then Mk+1
η (S) ∼= Ml+1

η (S) . I.e., the moduli space is independent
of k .

5.2.2 Expected dimension of the moduli space

At this point, we know nothing about the moduli space, but we can compute the dimension of
the Zariski tangent space of M2

η by linearising the Seiberg-Witten operator around a point in
Z2
η (S) , computing the kernel, and quotienting out the image of the infinitesimal action of the

gauge group.

Lemma 5.2.3. Let (iα, ψ) ∈ Z2
η (S) , then:

1. the infinitesimal action a2|(iα,ψ) : L3,2(M, iR) → C2
η (S) = L2,2(iT ∗M ⊕ S+) is given by

a2|(iα,ψ)(if) = (−idf, ifψ) ; (5.1)

2. the derivative DSWη|(iα,ψ) : L2,2(iT ∗M ⊕ S+) → L1,2(iΛ2
+T

∗M ⊕ S−) is given by

DSWη|(iα,ψ)(iβ, φ) = (2id+β −Dq|ψ(φ), /̂Dφ+ iα · φ+ iβ · ψ) , (5.2)

where Dq|ψ(φ) = φ⊗ ψ + ψ ⊗ φ− (⟨φ,ψ⟩ + ⟨φ,ψ⟩)/2 .

Proof. 1. Let f ∈ L3,2(M, iR) . Then we compute

a2|(iα,ψ)(if) = d

dt

∣∣∣∣
t=0

eift · (iα, ψ)

= d

dt

∣∣∣∣
t=0

(iα− tidf, eiftψ)

= (−idf, ifψ) .

2. Likewise, let (iβ, φ) ∈ L2,2(iT ∗M ⊕ S+) . Then we compute

DSWη|(iα,ψ)(iβ, φ) = d

dt

∣∣∣∣
t=0

SWη(iα+ tiβ, ψ + tφ)

= (2id+α+ 2tid+β − q(ψ + tφ) + iη, /̂D(ψ + tφ) + (iα+ tiβ) · (ψ + tφ))

= (2id+β −Dq|ψ(φ), /̂Dφ+ iα · φ+ iβ · ψ) .

4To prove this, note that ker(σ1(d+)(ξ)) = {λξ} for nonzero ξ ∈ T ∗M , but σ1(d∗)(ξ)(λξ) = λ∥ξ∥2 , so the
symbol of d+ + d∗ : Ω1 → Ω2

+ ⊕ Ω0 is injective.
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Theorem 5.2.4. Let (iα, ψ) ∈ Z2
η (S) , then the sequence (SW •

η (iα, ψ), d) defined as

0 L3,2(M, iR) L2,2(iT ∗M ⊕ S+) L1,2(iΛ2
+T

∗M ⊕ S−) 0
a2|(iα,ψ) DSWη |(iα,ψ)

is an elliptic complex. I.e.,
DSWη|(iα,ψ) ◦ a2|(iα,ψ) = 0 ,

and the associated symbol sequence

0 π∗iR π∗(iT ∗M ⊕ S+) π∗(iΛ2
+T

∗M ⊕ S−) 0
σ1(a2|(iα,ψ)) σ1(DSWη |(iα,ψ))

is exact. Moreover, the real Euler characteristic satisfies

χ(SW •
η (iα, ψ), d) = 2χ(M) + 3σ(M) − c1(det s)2

4 .

Proof. Most computations here are straightforward, so we will focus on the computation of the
Euler characteristic. To compute that one, note that the Euler characteristic only depends on
the principal part of the elliptic complex. The principal parts form the following elliptic complex

0 L3,2(M, iR) L2,2(iT ∗M ⊕ S+) L1,2(iΛ2
+T

∗M ⊕ S−) 0 ,(d,0) 2d+⊕ /̂D

which splits into a direct sum of the following sequences

0 L3,2(M, iR) L2,2(iT ∗M) L1,2(iΛ2
+T

∗M) 0

0 0 L2,2(S+) L1,2(S+) 0 .

(d,0) 2d+

/̂D

The Euler characteristic of the top sequence is 1 − b1 + b+
2 = (χ(M) + σ(M))/2 , whereas the

real Euler characteristic of the bottom sequence is (σ(M) − c1(det s)2)/4 , as given in Example
5.1.20 2, completing the proof.

If we add the observation that the gauge group acts freely on irreducible solutions, we obtain

Corollary 5.2.5. Let (iα, ψ) ∈ Z2
η (S) be irreducible. Then the dimension of the Zariski tangent

space T(iα,ψ)Mη is

−2χ(M) − 3σ(M) + c1(det s)2

4 + dim(H2(SW •
η , d)) . (5.3)
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Lecture 6

Compactness of the moduli space

In section 4.2.3, we introduced the spaces on which we study the Seiberg-Witten equations. The
goal of this chapter is to show that the moduli space Mk+1

η introduced on page 29 is a Hausdorff
and compact topological space.

The gauge action by Gk+2 on Ck+1 gives rise to a quotient space, which we denote by
Bk+1 := Ck+1/Gk+2. Then we have Mk+1

η ⊂ Bk+1 as a topological subspace. Therefore, it
is sufficient to show that Bk+1 is Hausdorff to conclude that Mk+1

η is Hausdorff, and this is
precisely what we will do.

Then after we have established Hausdorffness, we will establish a priori bounds for the
solutions of the Seiberg-Witten equations. These bounds then allow us to show that Mk+1

η

is also compact. Moreover, using these same bounds, we will show that given a Riemannian
manifold and a perturbation parameter η, there are only finitely many spinc structures that
admit admit solutions and have non-negative formal dimension.

The contents of this chapter are mainly based on section 2.2.1 of [Nic00] and chapter 4 and
5 of [Mor96].

6.1 Multiplication of functions in Sobolev spaces

In the course of this chapter we will regularly need to multiply functions that live in Sobolev
spaces. However, in general there is no reason for these products to be an element of a Sobolev
space again. The following theorem gives us conditions under which the product of functions in
certain Sobolev spaces are again in a Sobolev space.

Theorem 6.1.1 (Theorem 7.3 in [BH21]). Assume that si, s are natural numbers and 1 ≤ pi ≤
p < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s

(ii) s ≥ 0
(iii) si − s ≥ n

(
1
pi

− 1
p

)
,

(iv) s1 + s2 − s > n
(

1
p1

+ 1
p2

− 1
p

)
.

Then the map
Ls1,p1 × Ls2,p2 → Ls,p, (f, g) 7→ fg

is continuous bilinear.

39
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From this we deduce the following results, which we record in separate lemmas to be used
later in our proofs. The proof of each of these lemmas is checking that conditions 1–2 in the
theorem above are satisfied.

Lemma 6.1.2. Let k, ℓ be integers. If k ≥ 3 and k ≥ ℓ, then the map

Lk,2 × Lℓ,2 → Lℓ,2, (f, g) 7→ fg

is continuous bilinear.

Lemma 6.1.3. Let p > 2. Then the map

L2,2 × L2,p → L2,2, (f, g) 7→ fg

is continuous bilinear.

Lemma 6.1.4. Let 1 ≤ p ≤ 4 and let p < q. Then the map

L2,2 × L1,q → L1,p, (f, g) 7→ fg

is continuous bilinear.

Lemma 6.1.5. Let 1 ≤ q < p < ∞. Then the map

L2,2 × Lp → Lq, (f, g) 7→ fg

is continuous bilinear.

Proof. From the Sobolev Embedding Theorem, theorem 4.2.9, it follows that L2,2 ↪→ Lr for all
1 ≤ r < ∞. The result now follows by the Hölder inequality.

6.2 Hausdorffness of the quotient space

In this section, we will show that Bk+1 is a Hausdorff space. We do this by showing that the
action of the gauge group Gk+2 on Ck+1 is proper. For more details on proper group actions in
general, see appendix A.

Proposition 6.2.1. Let (ψn, An) and (µn, Bn) be sequences in Ck+1 converging to (ψ,A) and
(µ,B) respectively. Suppose that for each n we have a γn ∈ Gk+2 such that

γn · (ψn, An) = (µn, Bn).

Then there is a subsequence of (γn) which converges to γ ∈ Gk+2. Moreover, we have

γ · (ψ,A) = (µ,B).

Proof. Since γn · (ψn, An) = (µn, Bn), we have

dγn = 1
2γn(Bn −An).

We note that the operator d+d∗ : Ωeven → Ωodd is elliptic and that for functions (d+d∗)γ = dγ.
We make a case distinction between k = 1 and k ≥ 2.
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Case k = 1: We have γn ∈ L3,2 so by Morrey’s theorem, theorem 4.2.9, all γn ∈ C0. Then
we obtain a bound

∥dγn∥Lq ≤ C∥γn∥C0∥Bn −An∥Lq

for all 1 ≤ q < ∞. By elliptic regularity, theorem 5.1.21, it follows that γn ∈ L1,q for all
1 ≤ q < ∞. Then by lemma 6.1.4 we have

∥dγn∥L1,p ≤ C∥γn∥L1,q∥Bn −An∥L2,2

for 1 ≤ p ≤ 4 and q > p. So dγn ∈ L1,p for 1 ≤ p ≤ 4 and so by ellipticity we have γn ∈ L2,4. We
have 1

4 − 1
2 <

1
6 − 1

4 , so by the Rellich-Kondrachov theorem, theorem 4.2.9, we have a compact
embedding L2,4 ↪→ L1,6. So there is a L1,6-convergent subsequence of γn, which we will denote
still by γn. It converges to some γ ∈ L1,6. By Morrey’s theorem, theorem 4.2.9, L1,6 ↪→ C0, so
this subsequence also converges in the C0 sense. In particular we see that |γ| = 1 everywhere.

We have dγn → dγ in L6. By lemma 6.1.5 we obtain that 1
2γn(Bn − An) → 1

2γ(B − A) in
L6 as well. So dγ = 1

2γ(B − A). Then by lemma 6.1.4 we see that 1
2γ(B − A) is in L1,p for

1 ≤ p ≤ 4. So by ellipticity, γ ∈ L2,4. Then by lemma 6.1.3 we see that 1
2γ(B − A) is in L2,2,

so by ellipticity γ ∈ L3,2. So γ ∈ Gk+2. Finally, we have γnψn → γψ by lemma 6.1.2 and so
γ · (ψ,A) = (µ,B).

Case k ≥ 2: Then we have γn ∈ Lk+2,2. By the Rellich-Kondrachov theorem, theorem 4.2.9,
this embeds compactly in Lk+1,2, so we have a convergent subsequence in Lk+1,2, which we also
denote by γn. Then as above, we obtain that |γ| = 1 everywhere and dγ = 1

2γ(B − A). Then
by lemma 6.1.2 we see that dγ ∈ Lk+1,2, so by ellipticity γ ∈ Lk+2,2. So γ ∈ Gk+2. The final
assertion again follows from lemma 6.1.2.

Remark 6.2.2. This proposition can be generalised to nets of configurations and gauge group
elements. This would yield another proof of the Hausdorffness, where one can circumvent
appealing to first countability of the quotient space.

This proposition implies the following.

Corollary 6.2.3. The action Gk+2 ↷ Ck+1 is proper.

Proof. Let (ψn, An) ⊂ Ck+1 a sequence and γn ⊂ Gk+2 a sequence. Assume that (ψn, An) →
(ψ,A) and that γn · (ψn, An) → (µ,B). Then defining (µn, Bn) = γn · (ψn, An) we see that we
satisfy the condition of the theorem, so γn has a convergent subsequence. Hence the action is
proper, by proposition A.0.2.

This implies the Hausdorffness we claimed.

Corollary 6.2.4. The quotient space Bk+1 = Ck+1/Gk+2 is Hausdorff.

Proof. By corollary 6.2.3 the group action is proper. So by proposition A.0.6, the quotient
Bk+1 = Ck+1/Gk+2 is Hausdorff.

Corollary 6.2.5. The Seiberg-Witten moduli space Mk+1
η is Hausdorff.

Proof. The moduli space is a subspace of Bk+1.
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6.3 Curvature bounds

Our next goal is to show that the moduli space is compact. For this we need to estimate the
different terms in the Seiberg-Witten equations. In this section we will establish some of the
necessary bounds.

We start by estimating the norm of the Clifford action γ.

Lemma 6.3.1. Let α ∈ iΩ2
+(M). Then the we have the pointwise identity

|γα|2 = 4|α|2,

using the Frobenius norm.

Proof. This identity holds pointwise, so it suffices to check it in a point x ∈ M . The Frobenius
norm is given by |γα|2 = tr(γ∗

αγα). Since α is in iΩ2
+(M), we have γ∗

α = −γα. There is a
orthonormal basis {η0, η1, η2} for ∧2

+T
∗
xM given by

η0 = 1√
2

(
dx1 ∧ dx2 + dx3 ∧ dx4

)
η1 = 1√

2

(
dx1 ∧ dx3 − dx2 ∧ dx4

)
η2 = 1√

2

(
dx1 ∧ dx4 + dx2 ∧ dx3

)
,

where (xi) are normal coordinates at x.
A computation shows that this basis has the property that γ(ηk)2 = −2id and γ(ηk)γ(ηl) = 0

for k ̸= l at x. So if we write α =
∑2
k=0 αkηk, then we have with Clifford multiplication that

γ(α)2 = γ

(∑
k

αkηk

)2

= −2
( 2∑
k=0

α2
k

)
id.

This identity map lives on a (complex) dimension 2 space, so tr(id) = 2. Hence the norm
|γ(α)|2 = 4|α|2.

Next, we have the following equation for solutions of the unperturbed Seiberg-Witten equa-
tion.

Lemma 6.3.2. Let (ψ,A) be a solution to the unperturbed Seiberg-Witten equations on a com-
pact four-manifold M . Then

∥∇(ψ)∥2
L2 + 1

4⟨scalψ,ψ⟩L2 +
∥ψ∥4

L4

4 = 0.

Here scal denotes the scalar curvature of M .

Proof. Since (ψ,A) is a solution to the Seiberg-Witten equations, we have /Dψ = 0, so by the
Weitzenböck formula, theorem 4.1.20, we have

0 = /D
2
ψ = ∇∗∇ψ + scal

4 ψ + FA
2 · ψ.

Using the Seiberg-Witten equations, we can therefore write

0 = ∇∗∇ψ + scal
4 ψ + 1

2

(
ψ ⊗ ψ − |ψ|2

2 id
)
ψ
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= ∇∗∇ψ + scal
4 ψ + |ψ|2

4 ψ.

Taking the L2-inner product with ψ then yields the asserted equality.

This implies the following result for the non-existence of irreducible spinors.

Corollary 6.3.3. Let M be a compact four-manifold. Let κ−
M = maxx∈M (0,−scal(x)). Then

κ−
M∥ψ∥2

L2 ≥ ∥ψ∥4
L4 .

In particular, if M has non-negative scalar curvature, then any solution to the unperturbed
Seiberg-Witten equations has trivial spinor field, i.e., it is reducible.

Proof. We have for all x ∈ M that −scal(x) ≤ κ−
M , so scal(x) ≥ −κ−

M . Therefore

⟨scalψ,ψ⟩ =
∫
M

scal|ψ|2volg ≥ −κ−
M∥ψ∥2

L2 .

Using the equality from the previous lemma, we obtain

1
4∥ψ∥4

L4 ≤ ∥∇ψ∥2
L2 + 1

4∥ψ∥4
L4 = −1

4⟨scalψ,ψ⟩ ≤ 1
4κ

−
M∥ψ∥2

L2 .

The final assertions follows by noting that for a manifold with non-negative scalar curvature
κ−
M = 0.

Next, we will derive a pointwise estimate for the spinor. To do this we need the following
lemma’s about the gradient and the Laplace-Beltrami operator.

Lemma 6.3.4. Let (M, g) be an n-dimensional Riemannian manifold. Let f ∈ C∞(M) and let
(Ei) be a local orthonormal frame of TM . Then the gradient of f is locally given by

grad(f) =
n∑
i=1

Ei(f)Ei.

Proof. Let (εj) denote the orthonormal frame of T ∗M dual to (Ei). Then we have εj(Ei) = δji ,
so

df =
n∑
j=1

df(Ej)εj =
n∑
j=1

Ej(f)εj .

Since the frame εj is orthonormal dual to Ei, we have (εj)♯ = Ej . So

grad(f) = (df)♯ =
n∑
j=1

Ej(f)(εj)♯ =
n∑
j=1

Ej(f)Ej .

Recall that the Laplace-Beltrami operator is defined as ∆: C∞(M) → C∞(M),

∆(f) = −div(grad(f)).

We then have the following local form.
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Lemma 6.3.5. Let (M, g) be a Riemannian n-manifold. Let (Ei) be a local frame of TM . Let
∇g denote the Levi-Cività connection and let f ∈ C∞(M). Then we locally have

∆(f) = −
n∑
i=1

(
E2
i (f) − (∇g

Ei
Ei)(f)

)
.

Proof. The divergence of a vector field X ∈ X(M) is given in general by

div(X) = trg(∇gX) =
n∑
i=1

g(∇g
Ei
X,Ei).

Then using lemma 6.3.4 we compute

∇g
Ei

(grad(f)) =
n∑
j=1

∇g
Ei

(Ej(f)Ej)

=
n∑
j=1

(
EiEj(f)Ej + Ej(f)∇g

Ei
Ej
)
.

So we have

∆(f) = −
n∑

i,j=1

(
g(EiEj(f)Ej , Ei) + Ej(f)g(∇g

Ei
Ej , Ei)

)

= −
n∑

i,j=1
EiEj(f)δji −

n∑
i,j=1

Ej(f)g(∇g
Ei
Ej , Ei)

= −
n∑
i=1

E2
i (f) +

n∑
i,j=1

Ej(f)g(Ej ,∇g
Ei
Ei)

= −
n∑
i=1

(
E2
i (f) − (∇g

Ei
Ei)(f)

)
.

where we used that for an orthonormal frame we have

0 = Eig(Ei, Ej) = g(∇g
Ei
Ei, Ej) + g(Ei,∇g

Ei
Ej).

Lemma 6.3.6. Let (E, ⟨·, ·⟩,∇) → (M, g) be a Hermitian vector bundle with metric connection
over a Riemmanian n-manifold. Let (Ei) be a local orthonormal frame of TM and let ψ ∈ Γ(E)
be a section. Then we have

∆(|ψ|2) = 2Re(⟨∇∗∇ψ,ψ⟩) − 2
n∑
i=1

|∇Eiψ|2.

Here ∇∗ denotes the formal adjoint of ∇ as defined in definition 4.1.9.

Proof. We have

−
n∑
i=1

E2
i ⟨ψ,ψ⟩ = −

n∑
i=1

Ei (⟨∇Eiψ,ψ⟩ + ⟨ψ,∇Eiψ⟩)

= −
n∑
i=1

(⟨∇Ei∇Eiψ,ψ⟩ + 2⟨∇Eiψ,∇Eiψ⟩ + ⟨ψ,∇Ei∇Eiψ⟩)
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= −2
n∑
i=1

|∇Eiψ|2 − 2
n∑
i=1

Re(⟨∇Ei∇Eiψ,ψ⟩).

On the other hand we have

∇∗∇ψ = −trg(∇(∇ψ)) = −
n∑
i=1

∇Ei(∇ψ)(Ei)

= −
n∑
i=1

(
∇Ei∇Eiψ − ∇ψ(∇g

Ei
Ei)
)

= −
n∑
i=1

(
∇Ei∇Eiψ − ∇∇g

Ei
Eiψ

)
, (6.1)

where ∇g is the Levi-Cività connection. So then we have

⟨∇∗∇ψ,ψ⟩ = −
n∑
i=1

⟨∇Ei∇Eiψ,ψ⟩ +
n∑
i=1

⟨∇∇g
Ei
Eiψ,ψ⟩.

Hence

2Re(⟨∇∗∇ψ,ψ⟩) = −2
n∑
i=1

Re(⟨∇Ei∇Eiψ,ψ⟩) +
n∑
i=1

(
⟨∇∇g

Ei
Eiψ,ψ⟩ + ⟨ψ,∇∇g

Ei
Eiψ⟩

)

= −2
n∑
i=1

Re(⟨∇Ei∇Eiψ,ψ⟩) +
n∑
i=1

(∇g
Ei
Ei)(|ψ|2)

Combining this with equation (6.1), we obtain

−
n∑
i=1

E2
i ⟨ψ,ψ⟩ +

n∑
i=1

(∇g
Ei
Ei)(|ψ|2) = 2Re(⟨∇∗∇ψ,ψ⟩) − 2

n∑
i=1

|∇Eiψ|2.

So by lemma 6.3.5 we obtain

∆(|ψ|2) = 2Re(⟨∇∗∇ψ,ψ⟩) − 2
n∑
i=1

|∇Eiψ|2.

Lemma 6.3.7. Let M be a compact Riemannian four-manifold. Suppose that (ψ,A) is a solution
to the Seiberg-Witten equations. Then for every x ∈ M we have

|ψ(x)|2 ≤ max(max
y∈M

(4|η+(y)| − scal(y)), 0).

Proof. Note that this inequality is invariant under gauge transformations. Therefore we may use
theorem 5.2.1, which says that every solution to the Seiberg-Witten equations is gauge equivalent
to a smooth solution, to show this inequality. So assume without loss of generality that (ψ,A)
is a smooth solution. Then by the Weitzenböck formula and Seiberg-Witten equations we have

0 = ∇∗∇ψ + scal
4 ψ + |ψ|2

4 ψ − iη+ · ψ.

Let x0 be a point of M where |ψ(x)|2 attains its maximum. Then taking the inner product with
ψ and evaluating at x0 we obtain

⟨∇∗∇ψ(x0), ψ(x0)⟩ + scal(x0)
4 |ψ(x0)|2 + |ψ(x0)|4

4 + i

2⟨η+(x0) · ψ(x0), ψ(x0)⟩ = 0.
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Let (Ei) be a local orthonormal frame for TM . Then by lemma 6.3.6

∆(|ψ(x)|2) + 2
4∑
i=1

|∇Ei(ψ(x))|2 = 2Re(⟨∇∗∇ψ(x), ψ(x)⟩).

Then in a local maximum x0 we have ∆(|ψ(x0)|2) ≥ 0. So Re(⟨∇∗∇ψ(x), ψ(x)⟩) ≥ 0. Therefore
we obtain

0 ≥ scal(x0)
4 |ψ(x0)|2 + |ψ(x0)|4

4 + Re( i2⟨η+(x0) · ψ(x0), ψ(x0)⟩).

Then the Cauchy-Schwarz inequality gives us a bound on Re( i2⟨η+(x0) · ψ(x0), ψ(x0)⟩), namely
at most

|η+(x0)||ψ(x0)|2,

where we used lemma 6.3.1. So we have |ψ(x0)| = 0, in which case ψ ≡ 0, or we obtain the
bound

0 ≥ scal(x0)
4 + |ψ(x0)|2

4 − |η+(x0)|,

so
|ψ(x0)|2 ≤ 4|η+(x0)| − scal(x0),

and the asserted inequality follows, since for all x ∈ M ,

|ψ(x)|2 ≤ |ψ(x0)|2 ≤ 4|η+(x0)| − scal(x0) ≤ max(max
y∈M

(4|η+(y)| − scal(y)), 0)

Corollary 6.3.8. Let M be a compact Riemannian four-manifold. Suppose that (ψ,A) is a
solution to the Seiberg-Witten equations. Then for every x ∈ M we have

|F+
A (x)| ≤ 1

2 max(max
y∈M

(4|η+(y)| − scal(y)), 0) + |η+(x)|.

Proof. The Seiberg-Witten equation gives F+
A = ψ ⊗ ψ − |ψ|2

2 id − iη+, so |F+
A (x)| ≤ 1

2 |ψ(x)|2 +
|η+(x)|, so the result follows from the previous one.

We need the following lemma to obtain our first major result about compactness.

Lemma 6.3.9. Let (M, g) be a Riemannian manifold of dimension 4. Let ω ∈ Ω2(M). We may
write ω = ω+ + ω− where ω+ is self-dual and ω− is anti-self-dual. Then we have∫

M
ω2 = ∥ω+∥2

L2 − ∥ω−∥2
L2 .

Proof. We have

ω± ∧ ω± = ±ω± ∧ ⋆ω± = ±⟨ω±, ω±⟩volg = ±∥ω±∥2volg,

and

⟨ω+, ω−⟩volg = ⟨ω−, ω+⟩volg = ω− ∧ ⋆ω+ = ω− ∧ ω+

= ω+ ∧ ω− = −ω+ ∧ ⋆ω− = −⟨ω+, ω−⟩volg,
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so ω± ∧ ω∓ = 0. So we have ∫
M
ω2 =

∫
M

(ω+ + ω−)2

=
∫
M

(∥ω+∥2 − ∥ω−∥2)volg

=
(
∥ω+∥2

L2 − ∥ω−∥2
L2

)
.

In the next theorem we use the following notation:

κ−
M = max

x∈M
(0,−scal(x))

κ−
M,η = max(max

y∈M
(4|η+(y)| − scal(y)), 0).

Theorem 6.3.10. Let M be a compact Riemannian four-manifold. Then there are only finitely
many spinc structures up to isomorphism for M such that the moduli space of solutions to the
Seiberg-Witten equations is non-empty and has non-negative formal dimension. For any solution
(ψ,A) to the Seiberg-Witten equations at which the formal dimension is non-negative and for
any x ∈ M we have

|ψ(x)|2 ≤ κ−
M,η

∥∇(ψ)∥2
L2 ≤

(
κ−
M

4 + 1
2κ

−
M,η + ∥η+∥∞

)
κ−
M,ηvol(M)

|F+
A (x)| ≤ 1

2κ
−
M,η + |η+(x)|

∥F+
A ∥2

L2 ≤
(κ−
M,η + 2|η+(x)|)2

4 vol(M)

∥F−
A ∥2

L2 ≤
(κ−
M,η + 2|η+(x)|)2

4 vol(M) − 8π2χ(M) − 12π2σ(M).

Proof. The first and third inequality were already established above. The fourth one follows
from the third one by integrating over M . For the fifth one, we have formal dimension

c1(L)2 − (2χ(M) + 3σ(M)) ≥ 0

by corollary 5.2.5 and by lemma 6.3.9 we have

c1(L)2 = 1
4π2

(
∥F+

A ∥2
L2 − ∥F−

A ∥2
L2

)
,

Combining these two facts yields the fifth inequality. Finally, the second inequality we obtain
from the Weitzenbock formula

0 = ∇∗∇ψ + scal
4 ψ + F+

A

2 · ψ

and the bound on |F+
A (x)| for all x ∈ M .

It remains to show that there are only finitely many spinc structures up to isomorphism
with non-empty moduli space and non-negative formal dimension. Suppose we have a solution
(ψ,A) of the Seiberg-Witten equations at which the formal dimension is non-negative. Then by
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the preceeding, we have a bound depending only on the geometry of M and the perturbation
parameter η on both ∥F+

A ∥2
L2 and ∥F−

A ∥2
L2 . So the cohomology class represented by i

2πFA lies in
a compact subset of H2(M,R). Moreover, since this is the Chern class it must also be integral,
so there are only finitely many possibilities for this class. So there are only finitely many spinc

structures whose determinant line bundle has this given first Chern class.

6.4 Compactness

To show compactness we will first show that we can always find a representative of a point in
the moduli space subject to specific conditions. This process is called gauge fixing. We can
then use this fixed gauge to obtain more a priori bounds for solutions of the Seiberg-Witten
equations. Using this bounds for low regularity solutions, we can use elliptic bootstrapping to
obtain bounds for higher regularity solutions as well. Finally, we will use all these bounds to
argue that the moduli space is compact.

6.4.1 Gauge fixing

The goal of this section is to fix gauge and find a specific representative for a solution to the
Seiberg-Witten equations.

Lemma 6.4.1 (Gauge-fixing Lemma). Let L be a complex line bundle over a compact Rieman-
nian four-manifold M with a hermitian metric. Fix a unitary C∞ connection A0 on L. Then
for any ℓ ≥ 0 there are constants K,C > 0 depending only on M,A0, ℓ such that the following
hold: For any Lℓ,2 unitary connection A on L there is an Lℓ+1,2 change of gauge σ such that
σ ·A = A0 + α where α ∈ Lℓ,2(T ∗M ⊗ iR) satisfies d∗α = 0 and

∥α∥2
Lℓ,2 ≤ C∥F+

A ∥2
Lℓ−1,2 +K.

Proof. Let a0 = A − A0 ∈ Lℓ,2(T ∗M ⊗ iR). By the Hodge decomposition we find f ∈
Lℓ+1,2(M, iR), β ∈ Lℓ+1,2(∧2T ∗M ⊗ iR) and ω a harmonic 1-form such that

a0 = df + d∗β + ω.

Then γ := exp
(

1
2f
)

∈ Lℓ+1,2. Then we have dγ = 1
2γdf and we have

γ ·A = A− 2γ−1dγ = A− df = A0 + df + d∗β + ω − df = A0 + d∗β + ω.

Define α = d∗β + ω. Now, F+
A is the self-dual part of the curvature of the connection A, so in

particular we have d+A = F+
A . Then it follows that

(d∗ + d+)(d∗β + ω) = d+(d∗β + ω) = d+(γ ·A−A0) = F+
A − F+

A0
.

Then ellipticity of (d∗, d+) gives us the following bound for a constant C depending only on M

and ℓ (here and in the following C may be increased between estimates)

∥d∗β∥2
Lℓ,2 ≤ C∥(d∗d∗β, d+d∗β)∥2 = C∥F+

A − F+
A0

∥2
Lℓ−1,2 ≤ C∥F+

A ∥2
Lℓ−1,2 + C∥F+

A0
∥2
Lℓ−1,2 .

Then with K1 = ∥F+
A0

∥2
Lℓ−1,2 we have

∥d∗β∥2
Lℓ,2 ≤ C∥F+

A ∥2
Lℓ−1,2 + CK1.
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Next, we need to bound the harmonic component ω. We do this by applying a further gauge
transformation.

Let H1 denote the space of purely imaginary harmonic 1-forms. Let ω0 ∈ H1 and assume
that all periods of ω0 lie in 2πiZ. Let M̃ be the universal cover of M . Then integrating ω0 along
curves starting at a base point x0 ∈ M gives a map f : M̃ → iR. Then φ̃ = exp(f) descends to
a map φ : M → S1 since all periods lie in 2πiZ. Then dφ = φdf = φω0, so ω0 = φ−1dφ.

Let Λ denote the lattice of purely imaginary harmonic 1-forms in H1 with periods in 4πiZ.
Then H1/Λ is a torus, so there exists a constant K2 depending on ℓ such that any ω0 can be
written as ω0 = ω1 + 2ω2 with ω2 ∈ 1

2Λ and ∥ω1∥2
Lℓ,2 ≤ K2.

We now apply this to our harmonic component ω = ω1 + 2ω2. Then ω2 has periods in 2πiZ,
so there exists a φ : M → S1 such that ω2 = φ−1dφ. So we have

φ · (A0 + d∗β + ω) = A0 + d∗β + ω − 2φ−1dφ = A0 + d∗β + ω1.

So we for α = d∗β + ω1 and σ = φγ we have d∗α = 0, σ ·A = A0 + α and

∥α∥2
Lℓ,2 ≤ ∥ω1∥2

Lℓ,2 + ∥d∗β∥2
Lℓ,2 ≤ K2 + CK1 + C∥F+

A ∥2
Lℓ−1,2 ,

so with K = K2 + CK1 the result follows.

6.4.2 More bounds

In section 6.3 we found bounds on the spinor ψ and the curvature F+
A which essentially only

depended on the geometry of M . In this section we will obtain bounds on dF+
A and A. To do

this, we need the following lemma.

Lemma 6.4.2. Let M be a manifold and let ∇ be a torsion-free connection on TM . Let Alt
denote the antisymmetrization map. Then we have for ω ∈ Ωk(M)

dω = Alt(∇ω),

(where ∇ is the induced connection on ∧kT ∗M).

Proof. It suffices to check this on 1-forms, since both sides are anti-derivations. So let ω ∈ Ω1(M)
and X,Y ∈ X(M). Then we have

Alt(∇ω)(X,Y ) = (∇Xω)(Y ) − (∇Y ω)(X)
= X(ω(Y )) − ω(∇XY ) − Y (ω(X)) + ω(∇YX)
= X(ω(Y )) − Y (ω(X)) − ω(∇XY − ∇YX)
= X(ω(Y )) − Y (ω(X)) − ω([X,Y ]) = dω(X,Y ).

Then we have the following result for the exterior derivative of F+
A .

Lemma 6.4.3. There is a constant C depending only on M and the perturbation parameter η
such that for any solution (ψ,A) to the Seiberg-Witten equations we have

∥dF+
A ∥2

L2 ≤ C.
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Proof. Let ∇g denote the Levi-Cevita connection. Then we have by the spinor connection
property and the Seiberg-Witten equation that

∇gF+
A = ∇(ψ ⊗ ψ − |ψ|2

2 id) − i∇gη+.

By lemma 6.4.2, the anti-symmetrization of the Levi-Civita connection applied to a 2-form is
precisely the exterior derivative of the 2-form, so by antisymmetrizing the equation above we
obtain

dF+
A = ∇(ψ ⊗ ψ − |ψ|2

2 ) − idη+.

Then we obtain
dF+

A = ∇(ψ) ⊗ ψ + ψ ⊗ ψ − Re⟨∇ψ,ψ⟩id − idη+.

All terms on the right hand side are L2-bounded with bounds only depending on the geometry
of M and the perturbation parameter, so we obtain a bound C for ∥dFA∥2

L2

Lemma 6.4.4. There is a constant C1 only depending on M and the perturbation parameter η
such that for any solution (ψ,A) to the Seiberg-Witten equations we have

∥F+
A ∥2

L1,2 ≤ C1.

Proof. Let π : L1,2(∧2
+T

∗M) → H⊥ be the orthogonal projection to the orthogonal complement
of the space of harmonic self-dual two forms. We may then write F+

A = π(F+
A ) + ω, with ω

self-dual and harmonic. Then Hodge theory gives a constant C ′ such that

∥π(F+
A )∥2

L1,2 ≤ C ′∥dF+
A ∥2

L2 .

We also have an orthogonal projection to self-dual harmonic two forms, so there is a constant
C ′′ > 0 such that ∥ω∥L1,2 ≤ C ′′∥F+

A ∥L2 . Since we have an L2-bound on F+
A and a L2 bound on

dF+
A it follows that the asserted C1 > 0 exists.

Then we can combine these bounds with gauge fixing to obtain the following statement.

Proposition 6.4.5. Let σ be a spinc structure and let A0 be a fixed C∞ connection on the deter-
minant bundle det(σ). Then there exists a constant K1 depending only on M , the perturbation
parameter η and A0 such that for any solution (ψ,A) to the Seiberg-Witten equations we have
a connection A′ = A0 + α gauge equivalent to A with d∗α = 0 and ∥α∥2

L2,2 ≤ K1.

Proof. This follows from lemma 6.4.1 combined with the previous lemma.

6.4.3 (Sequential) compactness of the moduli space

The following theorem is the key to showing compactness of the moduli space.

Theorem 6.4.6. Suppose that (ψ,A) is a solution to the Seiberg-Witten equations and that we
have fixed gauge so that A = A0 +α where A0 is a fixed C∞ connection on the determinant line
bundle, with d∗α = 0 and with the projection of α into the harmonic forms contained in a given
compact fundamental domain modulo the lattice of harmonic forms with periods in 4πiZ. For
every ℓ ≥ 2 there is a constant C(ℓ), depending only on M , A0, the perturbation parameter and
ℓ such that

∥α∥2
Lℓ,2 + ∥ψ∥2

Lℓ,2 ≤ C(ℓ).

(Here the Lℓ,2-norm of the spinor is taken with respect to ∇A0).
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Proof. We have proven that ψ is pointwise bounded and we have seen that α is L2,2 bounded.
We have ∇Aψ = ∇A0ψ + αψ, so the L2,2-bound on ψ together with the L2 bound on ∇A yield
a L1,2 bound on ψ.

We will show that ψ is bounded in L3,2. By the Dirac equation we have

/DA0ψ = −α · ψ. (6.2)

Since α is L2,2 bounded and ψ is C0 bounded, it follows that /DA0ψ is L4 bounded, so by
ellipticity of /DA0 , the projection to the orthogonal of ker( /DA0) is L1,4 bounded. Since ψ is also
L2 bounded, so is its projection to ker( /DA0). Since this is finite dimensional, all norms are
equivalent, and so the projection is also L1,4 bounded. So together these imply a L1,4 bound on
ψ.

Then using lemma 6.1.4, we obtain an L1,3 bound on /DA0ψ, so arguing in the same way, we
obtain a L2,3 bound on ψ. Then using lemma 6.1.3, we obtain a L2,2 bound on /DA0ψ and so
once again we obtain a L3,2 bound on ψ.

Now, from the curvature equation

F+
A = ψ ⊗ ψ − |ψ|2

2 id − iη+ (6.3)

and lemma 6.1.2 it follows that F+
A is also bouded in L3,2. So by the gauge fixing lemma 6.4.1

α is L4,2 bounded. This was the initial step of obtaining a bound C(ℓ).
Now suppose by induction that we have for some ℓ ≥ 3 bounds for the Lℓ,2-norms of α and

ψ. Then from equation 6.2 and lemma 6.1.2 it follows that there is a Lℓ,2 bound on /DA0ψ and
so there is a Lℓ+1,2 bound on ψ. Then from the curvature equation 6.3 it follows that there is
a Lℓ,2-bound on F+

A . So by the gauge fixing lemma 6.4.1, there is a Lℓ+1,2 bound on α. The
result follows by induction.

From this theorem we obtain sequential compactness of the moduli space.

Corollary 6.4.7. Let (ψn, An) be any sequence of solutions to the Seiberg-Witten equations.
Then after passing to a subsequence, and applying L3,2 gauge transformations we can arrange
that the (ψn, An) are C∞ objects and they converge in the C∞ topology to a limit (ψ,A) which
is also a solution to the Seiberg-Witten equations.

Proof. By Morrey’s theorem, theorem 4.2.9, we have compact embeddings Lℓ,2 ↪→ Cℓ−3. By the
theorem we can gauge fix each (ψn, An) with a L3,2 gauge transformation to obtain a sequence
of (ψn, A0 + αn) as in the theorem. For these αn and ψn we have Lℓ,2 bounds only depending
on ℓ, M , a choice of A0 and the perturbation parameter η. We now apply a diagonal argument
to obtain a C∞ convergent subsequence.

We inductively define subsequences (ψ(ℓ)
n , A0 + α

(ℓ)
n ) for all ℓ ≥ 3. For ℓ = 3, we have a

compact embedding (ψn, A0 +αn) ∈ C0. Since we have an a priori L3,2 bound on ψn and αn, we
obtain a convergent subsequence (ψ(3)

n , A0+α(3)
n ). Now, suppose we have defined (ψ(ℓ)

n , A0+α(ℓ)
n ).

Then by the compact embedding Lℓ+1,2 ↪→ Cℓ−2 and the Lℓ+1,2 bound on the ψn and αn, we
have a convergent subsequence (ψ(ℓ+1)

n , A0 + α
(ℓ+1)
n ) of (ψ(ℓ)

n , A0 + α
(ℓ)
n ).

Now, we define (µn, Bn) = (ψ(n+3)
n , A0+α(n+3)

n ). Then we have that (µn, Bn) is a subsequence
of (ψn, An) and so it is convergent for all Ck. So it is a C∞ convergent sequence, say (µn, Bn) →
(µ,B). Since all (µn, Bn) solve the Seiberg-Witten equations, it follows that (µ,B) is also a
solution to the Seiberg-Witten equations.
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Corollary 6.4.8 (Compactness of the moduli space). The moduli space Mk+1
η is compact.

Proof. Since Sobolev spaces are seperable, they are second countable. Therefore the notions of
compactness and sequential compactness coincide. The previous corollary precisely states that
the moduli space is sequentially compact.
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Lecture 8

Seiberg-Witten equations on
cylinders

8.1 Applications

Before we actually start to study the Seiberg-Witten equations on cylinders, we will give the
proof for two theorems that require these kind of objects, where we black box the results from
the analysis of Seiberg-Witten equations on cylinders.

8.1.1 Vanishing for connected sums

Theorem 8.1.1. Let M1,M2 be closed four-manifolds with b+
2 (M1), b+

2 (M2) > 0 . Then M1#M2
has vanishing Seiberg-Witten invariants

Proof. Let D1 ⊆ M1 and D2 ⊆ M2 be open discs, let Ni := (Mi \Di)∪S3 S3 × [0,∞) and smooth
out the corner, such that Ni gets a cylindrical end diffeomorphic to S3 × [1,∞) . Equip Ni with
a generic metric gi such that gi|S3×[1,∞)

∼= gS3 + dt2 . For every r > 1 , pick a diffeomorphism
M1#M2 ∼= (N1 \(S3 ×(r,∞)))∪S3×{r} (N2 \(S3 ×(r,∞))) . This process gives a family of metrics
gr on M1#M2 such that gr is generic away from the cylindrical neck. Also pick a Spinc-structure
σ on M1#M2 and equip M1 and M2 with the respective Spinc-structure σ1 and σ2 , which are
canonically induced from σ|Mi\Di .

We will use the following black box: for r ≫ 1 and generic η with supp(η) ⊆ M1\D1⊔M2\D2 ,

Mgr,η(σ, ∗) ∼= Mg1,η|N1 ,µ
(N1, σ1, ∗) × Mg2,η|N2 ,µ

(N2, σ2, ∗) .

Here, Mgi,η|Ni ,µ
(Ni, σi, ∗) is the moduli space of solutions to SWη|Ni

with suitable exponential
convergence to a suitable model at ∞ , modulo elements of the gauge group that are 1 at a
chosen basepoint. The residual S1 action on Mgr,η(σ, ∗) acts diagonally on the right hand side.
Let Mgi,η|Ni ,µ

(Ni, σi) := Mgiη|Ni ,µ
(Ni, σi, ∗)/S1 . Since we assumed M1,M2 had positive b+

2 , the
same is true for N1, N2 , so a black box tells us the associated moduli spaces generically consist
of irreducible solutions. We see that, generically,

dim(Mgr,η(σ)) = dim(Mg1,η|N1 ,µ
(N1, σ1)) + dim(Mg2,η|N2 ,µ

(N2, σ2)) + 1 .

In particular, if dim(Mgr,η(σ)) = 0 , one of the moduli spaces Mgi,η|Ni ,µ
(Ni, σi) must be generi-

cally empty, such that Mgr,η(σ) is also generically empty for r big enough.
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In the other case, let θ0 be a global angular form for the residual S1 action on Mgr,η(σ, ∗) ,
and let θ1, θ2 be global angular forms for the residual S1-actions on Mg1,η|N1 ,µ

(N1, σ1, ∗) and
Mg2,η|N2 ,µ

(N2, σ2, ∗) . In particular, we see θ0 = 1
2(pr∗

1θ1 + pr∗
2θ2) + exact term . We see

sw(s) =
∫
Mgr,η(σ,∗)

(θ0 ∧ (dθ0)n)

= 1
2n+1

∫
Mg1,η|N1 ,µ

(N1,σ1,∗)×Mg2,η|N2 ,µ
(N2,σ2,∗)

(pr∗
1θ1 + pr∗

2θ2) ∧ (pr∗
1dθ1 + pr∗

2dθ2)n ,

where n = 1
2 dim(Mgr,η(σ)) . Thus,

sw(σ) = 2−n−1∑
k

(
n

k

)∫
Mg1,η|N1 ,µ

(N1,σ1,∗)
θ1 ∧ (dθ1)k

∫
Mg2,η|N2 ,µ

(N2,σ2,∗)
(dθ2)n−k + 1 ↔ 2

 ,

where 1 ↔ 2 indicates the same term but with 1 and 2 exchanged. Since (dθ)n−k is exact
whenever n ̸= k , we find

sw(σ) = 2−n−1

∫
Mg1,η|N1 ,µ

(N1,σ1,∗)
θ1 ∧ (dθ1)n +

∫
Mg2,η|N2 ,µ

(N2,σ2,∗)
θ2 ∧ (dθ2)n

 .

Since 2n + 1 = dim(Mg1,η|N1 ,µ
(N1, σ1, ∗)) + dim(Mg2,η|N2 ,µ

(N2, σ2, ∗)) , we see that in order
to have sw(σ) ̸= 0 , we must have that either 2n + 1 = dim(Mg1,η|N1 ,µ

(N1, σ1, ∗)) or 2n + 1 =
dim(Mg2,η|N2 ,µ

(N2, σ2, ∗)) . But then we have dim(Mgi,η|Ni ,µ
(Ni, σi, ∗)) = 0 for the other one,

implying dim(Mgi,η|Ni ,µ
(Ni, σi)) = −1 , i.e. it’s generically empty. So in that case, we generically

have Mgr,η(σ) = ∅ as well, so sw(σ) = 0 .

If we combine this with Taubes’ non-vanishing result, we obtain

Corollary 8.1.2. Let M be a closed four-manifold admitting symplectic structures. Then M is
irreducible: it cannot be decomposed as M = N1#N2 with N1, N2 closed four-manifolds satisfying
b+

2 (N1), b+
2 (N2) > 0 . In particular, a connected sum of two closed symplectic four-manifolds is

never symplectic.

8.1.2 Thom conjecture

One invariant of four manifolds that feels rather untouchable is the minimal genus function:

Definition 8.1.3 (Minimal genus function). Let M be a closed four-manifold. The minimal
genus function gM : H2(M ;Z) \ 0 → N0 sends a homology class α to the minimal genus of a
closed embedded surface Σ ⊆ M representing α .

While this is a rather strong invariant of four manifolds, it is not very computable. One can
make educated guesses, for instance, an application of the adjunction formula and Riemann-Roch
for curves gives

Theorem 8.1.4. Let M = CP 2 with the standard complex structure and standard generator H
of H2(M ;Z) . A holomorphic curve Σ in M representing a class dH with d > 0 satisfies

genus(Σ) = (d− 1)(d− 2)
2 .
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If d < 0 , we can represent classes in dH using antiholomorphic curves (i.e. holomorphic
curves, but with the opposite orientation), such that we are lead to the following conjecture
attributed to Thom, which was proven by Kronheimer and Mrowka using Donaldson theory,
but for which we will sketch a proof using Seiberg-Witten theory:

Theorem 8.1.5 (Thom conjecture). The minimal genus function gCP 2 of CP 2 is

gCP 2(dH) = max(0, (|d| − 1)(|d| − 2)
2 ) . (8.1)

Proof. The case where |d| = 0, 1, 2, 3 follow from a classical result by Kervaire and Milnor that
gCP 2(|d|) ≥ 1 whenever |d| > 2 , so we will do the |d| > 3 case. Moreover, we only have to prove
it when d ≥ 0 , since that also implies the result for d < 0 , so we may assume d > 3 .

Suppose Σ is a genus g surface representing dH . Then Σ is genus minimising if and only if
the proper transform Σ̃ of Σ in CP 2#d2CP 2 is genus minimising in dH −

∑
iEi . Since we blew

up all self-intersections of Σ , we see that Σ̃ · Σ̃ = 0 , so we can find a tubular neighbourhood
U ∼= Σ ×D2 of Σ̃ . Write N := ∂U ∼= Σ × S1 . We can equip Σ with a constant curvature metric
g0 , such that the curvature s0 satisfies

volg0(Σ)s0 = 4π(2 − 2g(Σ))

by the Gauss-Bonnet theorem and we equip N with the product metric gN = g0 + dθ2 .

We can equip M := CP 2#d2CP 2 with a generic metric g1 such that N has a tubular
neighbourhood UN isometric to N × [−1, 1] with the product metric gn + dt2 . We can "stretch
the neck" to find a family of metrics gn such that gn|M\UN = gm|M\UN and (UN , gn|UN ) ∼=
(N × [−n, n], gN + dt2) .

Black box: if we pick n large enough, then (gn, 0) will lie in the positive chamber corre-
sponding to the canonical Spinc structure σ0 corresponding to −K = 3H −

∑
iEi . Moreover,

sw+(σ0) = 1 since M is a Kähler surface, so we conclude that there are (σ0, gn, 0)-monopoles
whenever n is big enough, so we can pick a monopole (An, ψn) for each gn . Since the scalar cur-
vature of gn is uniformly bounded, the key estimate implies that ∥ψn∥∞ < C for some constant
C independent of n .

Moreover, recall that solutions to the unperturbed Seiberg-Witten equations on a compact
manifold are stationary points of the energy functional

E(A,ψ) =
∫
M

(|∇Aψ|2 + |F+
A |2 + s

4 |ψ|2 + 1
8 |ψ|4)vol ,

such that solutions to the unperturbed Seiberg-Witten equations corresponding to a Spinc-
structure σ have energy

E(σ) = −4π2
∫
M
c2

1(detσ) .

Thus, (An, ψn) has energy 4π2(d2 −9) on M . Moreover, E(ψn|M\UN , An|M\UN ) is bounded from
below by

∫
M\UN

s
4 |ψn|2 , so because s is uniformly bounded and |ψn| is uniformly bounded, we

conclude that
E(An|UN , ψn|UN ) = E(σ0) −E(An|M\UN , ψn|M\UN ) < C

for some constant C independent of n .
In total, we have found a sequence of monopoles (An, ψn)n on N × [−n, n] with uniformly

bounded energy and uniformly bounded ∥ψn∥∞ . If we pick an isomorphism det(σ0)|N×[−n,n] ∼=
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[−n, n] × det(σ0)|N and a reference connection ∇̂ such that on det(σ0)|N×[−n,n] , ∇̂ = ∇N + dt ,

with ∇N a connection on det(σ0)|N , we can always pick a gauge such that An = ian(t) , where
an(t) is a real one-form on N × {t} , such that in this gauge, the pair (An, ψn) defines a one-
parameter family of structures living on N .

Black box: since we are stretching the neck to infinity, we will actually find that this defines a
monopole (A,ψ) on the three-manifold N corresponding to the Spinc structure σ0|N , which has
spinor bundle S+|N , where we note that Spinc(3) ∼= U(2) , so the fundamental representation
is on C2 . For such objects, there is another curvature estimate that states

∥ψ∥2
∞ ≤ −2 max s ,

so because the scalar curvature on Σ is constant, we conclude

volg0(Σ)∥ψ∥2
∞ ≤ 8π(2g(Σ) − 2) .

Black box: by analysis of the monopole equations on three-manifolds, we then conclude

volg0(Σ)∥FA∥∞ ≤ 2π(2g(Σ) − 2) .

Now, if we let p : N → Σ denote the projection, we see

c1(S+|N ) = p∗c1(S+|Σ) = p∗((dH −
∑
i

Ei) ∩ (3H −
∑
i

Ei)) = −p∗(d(d− 3)) ,

so in particular, since d > 3 ,

d(d− 3) =
∣∣∣∣∫

Σ
c1(S+|Σ)

∣∣∣∣ ≤ 1
2π

∫
Σ

|FA|2 ≤ 2g(Σ) − 2 .

In total, we see g(Σ) ≥ (d(d− 3) + 2)/2 , so

g(Σ) ≥ (d− 1)(d− 2)
2 . (8.2)

In fact, similar techniques can be used to prove

Theorem 8.1.6 (Adjunction inequality). Let M be a closed four-manifold with b+
2 (M) > 1 and

let c ∈ H2(M ;Z) be a Seiberg-Witten basic class of M , i.e. sw(σc) ̸= 0 . Let Σ ⊆ M be a closed
embedded surface of genus g ≥ 1 , such that Σ · Σ ≥ 0 , then

2g − 2 ≥ |c ∩ [Σ]| + Σ · Σ . (8.3)

We conclude that if M is a symplectic four-manifold with b+
2 > 1 , then symplectic surfaces

Σ ⊆ M with Σ ·Σ ≥ 0 are genus minimising in their homology class. In fact, Morgan, Szabó and
Taubes have shown that symplectic surfaces are also genus minimising whenever b+

2 = 1 (also
using cylindrical gluing techniques) and Osváth and Szabó have proven that this also holds for
negative self-intersecting curves (using different techniques):

Theorem 8.1.7 (Symplectic Thom conjecture). Let M be a closed symplectic four-manifold and
let Σ ⊆ M be a closed symplectic surface. Then gM ([Σ]) = genus(Σ) , i.e., Σ is genus-minimising
in its homology class.
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8.2 Seiberg-Witten on cylinders

8.2.1 Monopole-equations on 3-manifolds

In this section, we will study Spinc-structures on three-manifolds. Recall that any closed
oriented three-manifold M is parallelisable, such that (after picking a metric), Fr(TM) ∼=
M × SO(3) . Therefore, any closed orientable three-manifold admits a Spin-structure corre-
sponding to the double cover M × Spin(3) → M × SO(3) , with spinor bundle M × C2 . Using
that Spin(3) ∼= SU(2) , and the fact that SU(2) ×Z2 U(1) = {eiθA|eiθ ∈ U(1), A ∈ SU(2)} , we
see that Spinc(3) ∼= U(2) . The fundamental representation of Spinc(3) is therefore on C2 .

Proposition 8.2.1. Let M be a closed oriented three-manifold. Then Spinc-structures σ on
M are in one-to-one correspondence with complex line bundles L → M . The spinor bundle
associated to σ is S ∼= (M × C2) ⊗ L .

Given a Spinc-structure σ on M with spinor bundle S , let A(S) denote the space of spinorial
connections. We define the configuration space

C(M,σ) ∼= A(S) × Γ(S) , (8.4)

which, under a choice of reference connection B0 , is isomorphic to iΩ1(M) × Γ(S) .

Definition 8.2.2 (Chern-Simons-Dirac functional). Let M be a closed oriented three-manifold
with Spinc structure σ with Spinor bundle S and fix a reference connection B0 on S . The
Chern-Simons-Dirac functional is the map L : C(M,σ) → R given by

L(B,ϕ) = 1
8

∫
M

Tr(B −B0) ∧ Tr(FB + FB0) + 1
2

∫
M

⟨ /DBϕ, ϕ⟩vol . (8.5)

Proposition 8.2.3. The stationary points of the L are solutions to the following equations

/DBϕ = 0 ; (8.6)
1
2γ(∗Tr(FB)) = ϕ⊗ ϕ− 1

2 |ϕ|2 . (8.7)

Proof. Let (B,ϕ), (b, f) ∈ C(M,σ) and compute

d

dt

∣∣∣∣
t=0

L(B + tb, ϕ+ tf) = d

dt

∣∣∣∣
t=0

(1
8

∫
M

Tr(B + itb−B0) ∧ Tr(FB + itdb+ FB0)

+1
2

∫
M

⟨ /DB(ϕ+ tf) + itb · (ϕ+ tf), ϕ+ tf⟩vol
)

= i

4

∫
M
b ∧ Tr(FB + FB0) + i

4

∫
M

Tr(B −B0) ∧ db

+ 1
2

∫
M

⟨ib · ϕ, ϕ⟩vol +
∫
M

Re(⟨ /DBϕ, f⟩)vol .

The last term on the right-hand side only vanishes for every f if and only if /DBϕ = 0 . Moreover,
integrating the second term by parts, we find the remaining equation

i

2

∫
M

(b ∧ Tr(FB) + ⟨b · ϕ, ϕ⟩) = 0 .

Note that if we pick a local orthonormal frame (φ1, φ2) for S , we see

⟨b · ϕ, ϕ⟩ =
∑
i=1,2

⟨⟨ϕ, φi⟩b · φi, ϕ⟩
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=
∑
i=1,2

⟨b · φi, ⟨φi, ϕ⟩ϕ⟩

= 2⟨γ(b), ϕ⊗ ϕ⟩ .

Note that the factor 1
2 in the operator norm is conventional, to preserve norm under the Clifford

action. Moreover, because we use the complex linear Hodge ∗-operator and the curvatire is
imaginary, we have∫

M
b ∧ Tr(FB) = −

∫
M
b ∧ Tr(FB) = −

∫
M

⟨b, ∗Tr(FB)⟩vol ,

so we conclude ∫
M

⟨γ(b), 2ϕ⊗ ϕ− γ(∗Tr(FB))⟩vol = 0 .

Now, b is a one-form, so γ(b) is a traceless endomorphism of S , so we see that this vanishes for
each b ∈ Ω1(M ;R) iff

(2ϕ⊗ ϕ− γ(∗Tr(FB)))0 = 0 ,

where (−)0 indicates taking the traceless part. Since ∗Tr(FB) is a one form, γ(∗Tr(FB)) is
traceless, so we get the second equation

1
2γ(∗Tr(FB)) = (ϕ⊗ ϕ)0 = ϕ⊗ ϕ− 1

2 |ϕ|2 .

Definition 8.2.4. A stationary point of L is called an unperturbed monopole. The equa-
tions in the previous Proposition are the unperturbed three-dimensional monopole equa-
tions.

Like in the four-dimensional case, we have some curvature estimates for solutions to the
monopole equations

Theorem 8.2.5. Let (M, g) be a closed Riemannian three-manifold with scalar curvature s and
let (B,ϕ) be a monopole for (M, g) , then

∥ϕ∥2
∞ ≤ max(0,−2 max s) .

The CSD-functional is not invariant under the action of the full gauge group. The gauge
group acts on the connection by u ·B = B − u−1du . If we define αu := 1

2πiu
−1du , we find

Lemma 8.2.6. The CSD-functional transforms under the gauge group as

L(u(B,ϕ)) = L(B,ϕ) + 2π2
∫
M
αu ∧ c1(detσ) . (8.8)

In particular, the CSD-functional is invariant under the identity component of the gauge
group.

The three-dimensional monopole equations are related to the Seiberg-Witten equations on
cylinders. If M is a three-manifold with Spinc-structure σ and spinor bundle S , we can equip
M × R with bundle S ⊕ S , and define γ : Cl(T (M × R)) → End(S ⊕ S) by

γ(∂t) :=
(

0 −1
1 0

)
(8.9)
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γ(π∗X) :=
(

0 −γ(X)∗

γ(X) 0

)
, (8.10)

where π : M × R → M is the projection.

Lemma 8.2.7. The above defines a Spinc-structure π∗σ on M ×R such that the decomposition
S+ ⊕ S− agrees with the decomposition S ⊕ S .

We get

Theorem 8.2.8. Let (Bt, ϕt)t∈R ⊆ C(M,σ) be a smooth one-parameter family of configurations.
Then the associated configuration

(Bt + dt, ϕt) ∈ C(M × R, π∗σ)

is a solution to the four-dimensional Seiberg-Witten equations if and only if (Bt, ϕt)t∈R solves
the downward gradient flow equations for the CSD-functional:

d

dt
(Bt, ϕt) = −grad(L)(Bt, ϕt) . (8.11)

Any configuration on M × R can be chosen to have temporal gauge, i.e. a gauge such
that (A,ψ) = (Bt + dt, ϕt) . On the one hand, a section ψ ∈ Γ(S+) defines a one-parameter
family of sections of S because S+ = π∗S , on the other hand, fixing a reference connection A0
in temporal gauge, we see that A = A0 + ib(t) + iadt , where b(t) is a one-parameter family of
one forms on M , and a is a real valued function. If we then pick a gauge u solving u = au̇ , we
see u · (A,ψ) is in temporal gauge. We see that the remaining gauge freedom is precisely the
gauge group of M .

The upshot is that if we find a solution to the Seiberg-Witten equations on a half-cylinder
M × [0,∞) , we can put it in temporal gauge, so the one-parameter family of configurations
on M will either diverge in some way as t → ∞ , or it will move towards a stationary point
of the CSD-functional. The invariant that captures this behaviour is precisely the energy of a
four-dimensional configuration:

Theorem 8.2.9. Let (Bt + dt, ϕt) be a solution to the Seiberg-Witten equations on M × [0,∞)
(in temporal gauge). If the energy

E(A,ψ) =
∫
M×[0,∞)

(|∇Aψ|2 + |F+
A |2 + s

4 |ψ|2 + 1
8 |ψ|4)vol

is finite, then (Bt, ϕt) converges in any Sobolev norm to a monopole (B,ϕ) on M .

8.2.2 A few words about asymptotically cylindrical manifolds

This section will be rather sketchy. For the applications we gave at the start of this chapter,
we always had manifolds that looked like M × R+ away from a compact submanifold (with
boundary).

Definition 8.2.10. An asymptotically cylindrical manifold is a tuple (M, gM , N, gN , φ) ,
where (M, g) is an open Riemannian n-manifold, (N, gN ) is a closed Riemannian (n−1)-manifold,
and φ is an isometry φ : (M \ U, gM |M\U ) → (N × [0,∞), gN + dt2) , where U is a relatively
compact open submanifold of M . We call (N, gN ) × [0,∞) the cylindrical end of M , we call
N the asymptote of M and we call U the bulk of M .
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The "correct" function spaces to study on such manifolds are the spaces Lk,pµ consisting of
functions that decay suitably quickly as t → ∞ .

Definition 8.2.11. Let M be an asymptotically cylindrical manifold asymptotic to N . Let
t : M → R be a smooth function such that t|N×[0,∞) = π[0,∞) . Let k ∈ N0 , p ∈ [1,∞) and
µ > 0 , then

Lk,pµ (M) := {f ∈ Lk,ploc(M) : ∥fetµ∥k,p < ∞} . (8.12)

Thus, Lk,pµ (M) are those functions that converge to 0 faster than e−tµ . Likewise, one can
define

Definition 8.2.12. An asymptotically cylindrical vector bundle E → M is a vector bundle E
over an asymptotically cylindrical manifold M asymptotic to N together with a vector bundle
F → N and choice of isomorphism E|N×[0,∞)

∼=−→ π∗F , where π : N × [0,∞) → N is the
projection.

Likewise, one can define Lk,pµ (E) for asymptotically cylindrical vector bundles with asymp-
totically cylindrical metrics.

One can also define asymptotically cylindrical Spinc-structures, where we note that two iso-
morphic Spinc-structures need not be isomorphic as asymptotically cylindrical Spinc-structures,
since an isomorphism of Spinc structures over the cylindrical end need not extend to an actual
isomorphism of Spinc-structures.

Definition 8.2.13. Let M be an asymptotically cylindrical Spinc manifold with asymptotically
cylindrical Spinc structure σ asymptotic to (N,σN ). Then we define

Ck,p
µ (M,σ) := {(A,ψ) ∈ C(M,σ) : ∃(B,ϕ) ∈ Ck,p(N, σ|N ) s.t. (A,ψ) − χ(π∗(B,ϕ)) ∈ Lk,pµ } ,

where π : N × [0,∞) → N is the projection and χ is a bump-function supported in N × [0,∞)
such that χ ≡ 1 on N × [1,∞) .

I.e., Ck,p
µ (M,σ) is the space of configurations that converge to a configuration on N faster

than a fixed exponential.
If we let η ∈ Ω2

+,c(M) be a compactly supported perturbation, we can consider finite energy
Cµ(M,σ)-solutions to the perturbed Seiberg-Witten equations on M with perturbation η . Let
Mη,µ(M,σ) denote the moduli space of such solutions modulo gauge-transformations u such
that u converges faster than e−µt to something cylindrical. Since such solutions to the Seiberg-
Witten equations always converge to monopoles on the asymptote, we get a canonical map
∂∞ : Mη,µ(M,σ) → Mσ|N , the moduli space of monopoles on N modulo gauge transformations
on N . Likewise, let Mη,µ(M,σ, ∗) be the moduli space of irreducible solutions with a fixed value
at some point ∗ , i.e. this has a residual S1-action.

The idea is now that if we have two asymptotically cylindrical manifolds M1,M2 with the
same asymptote N , we can glue X1 := M1 \N×[r+1,∞) and X2 := M2 \N×[r+1,∞) together
along a time reversing diffeomorphism N×(r, r+1) → N×(r, r+1) , such that if we pick r large
enough and we pick a basepoint ∗ somewhere in the neck, we can glue (A1, ψ1) ∈ Mη1,µ(M1, σ1, ∗)
and (A2, ψ2) ∈ Mη1,µ(M2, σ2, ∗) together whenever ∂∞(A1, ψ1) = ∂∞(A2, ψ2) , since they almost
agree on the neck. Morally, one would be led to a formula like

Mη1+η2(X1 ∪N×(r,r+1) X2, σ1 ∪ σ2, ∗) ∼= Mη1,µ(M1, σ1, ∗) ×Mσ|N
Mη1,µ(M2, σ2, ∗) ,

where X1 ∪N×(r,r+1) X2 is a closed Riemannian Spinc four-manifold. However, such a formula
is not true in general.
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Appendix A

Proper group actions

Definition A.0.1. Let X be a topological space and let G be a topological group. Assume
that G ↷ X continuously. We say that the action is proper if the shear map S : G × X →
X ×X, (g, x) 7→ (x, g · x) is proper.

We have the following alternative characterizations.

Proposition A.0.2. Let G ↷ X be a continous group action. Assume that G and X are
metrizable. Then the following are equivalent:

1. The action is proper.

2. For all sequences (xn) ⊂ X and (gn) ⊂ G such that xn → x and gn · xn → y, there is a
convergent subsequence of (gn).

3. For all compact K ⊂ X, the set GK = {g ∈ G | g ·K ∩K ̸= ∅} is compact.

Proof. Note that for metrizable space the notions of compactness and sequential compactness
coincide. Moreover, since subspaces are metrizable as well, this property is hereditary. We will
use this fact in the proof.

(1 ⇒ 2) Suppose that the action is proper. Let (xn) ⊂ X and (gn) ⊂ G be sequences such
that xn → X and gn ·xn → y. Then for all n we have S(gn, xn) = (xn, gn ·xn), so by assumption
S(gn, xn) → (x, y). So the set L = {S(gn, xn) | n ∈ N} ∪ {(x, y)} is compact. Since S is proper
by assumption, the set S−1(L) ⊂ G × X is compact. So prG(S−1(L)) ⊂ G is compact and
(gn) ⊂ prG(S−1(L)). So by (sequential) compactness, (gn) has a convergent subsequence.

(2 ⇒ 3) Let K ⊂ X be compact. Let (gn) ⊂ GK be a sequence. Then for each n ∈ N we can
choose an xn ∈ K such that gn ·xn ∈ K. Then we can extract a subsequence of xn and gn which
we denote by the same symbol such that (xn) and (gn · xn) converge, using the compactness of
K. Then by 2 we have a convergent subsequence of gn. So GK is sequentially compact, and so
also compact.

(3 ⇒ 1) We have to show that the shear map S : G×X → X×X is proper. Let K ⊂ X×X

be compact. Then K1 = pr1(K) and K2 = pr2(K) are compact, hence L = K1 ∪K2 is compact.
Then L× L is also compact and K ⊂ L× L. We claim that S−1(L× L) ⊂ GL × L.

Let (g, x) ∈ S−1(L × L). Then (x, g · x) ∈ L × L, so x ∈ L and g · x ∈ L ∩ g · L. So
g ∈ GL. By assumption GL is compact, so GL×L is compact. Finally, by continuity, S−1(K) ⊂
S−1(L× L) ⊂ GL × L is a closed subset. So S−1(K) is also compact. So S is proper.
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We have used the following lemma in the proof.

Lemma A.0.3. Let X be a topological space. Let (xn) ⊂ X be a sequence. Assume that xn → x.
Then L = {xn | n ∈ N} ∪ {x} is compact.

Proof. Let U be an open cover of L. Then there is a U0 ∈ U such that x ∈ U0. Since xn → x,
there exists an N ∈ N such that for n ≥ N we have xn ∈ U0. Now, for 0 ≤ k ≤ N − 1, we pick
Uk+1 ∈ U such that xk ∈ Uk+1. Then {U0, U1, . . . , UN} is a finite subcover.

Lemma A.0.4. Let G↷ X be a continuous group action. Then the quotient map q : X → X/G

is open.

Proof. Let U ⊂ X be open. Then

q−1(q(U)) =
⋃
g∈G

g · U

which is open. So by the quotient map property, q(U) is open.

Lemma A.0.5. Let G ↷ X be a proper group action. Let R ⊂ X × X be the equivalence
relation on X induced by the action. Then R is closed as a subset.

Proof. Let S : G×X → X ×X be the shear map of the action. We claim that R = S(G×X),
which is then closed since the image of a proper map is closed. We have (x, y) ∈ R iff x ∼G y

iff there exists a g ∈ G such that y = g · x iff there exists a g ∈ G such that S(g, x) = (x, y) iff
(x, y) ∈ S(G×X). So indeed R = S(G×X).

Proposition A.0.6. Let G ↷ X be a continuous proper group action. Assume that X and G

are Hausdorff. Then the quotient space X/G is Hausdorff.

Proof. Denote the quotient map by q : X → X/G. Let q(x), q(y) ∈ X/G. Assume that q(x) ̸=
q(y). Then (x, y) ̸∈ R. Since R is closed, there are open neighbourhoods U, V ⊂ X of x and y

respectively, such that U × V ∩ R = ∅. Then q(U) and q(V ) are open neighbourhoods of q(x)
and q(y) respectively. Suppose that q(z) ∈ q(U) ∩ q(V ). Then there are g, h ∈ G such that
g · z ∈ U and h · z ∈ V , so (g · z, h · z) ∈ U × V and (g · z, h · z) ∈ R, since g · z = gh−1 · (h · z).
This is a contradiction, so q(U) ∩ q(V ) = ∅. So X/G is Hausdorff.
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